Resource Accounting

From P2P Foundation
Jump to navigation Jump to search

Description

Simon Michaux:

"Resource accounting The human population currently administers the global industrial ecosystem as if there are unlimited natural resources. In reality, the planet is a finite dynamically self-regulating system that has been relatively stable for time periods best measured in geological eras. The industrial eco-system has grown very quickly in size and complexity since the start of the first industrial revolution (IR1). The industrial paradigm has only a very limited perspective of approximately 250 years. So, the global industrial ecosystem habitats a finite closed (mostly) biosphere, and it consumes finite non-renewable natural resources (metal, energy, materials) and renewable resources (sourced from flora and fauna). Logically, to sustain the environmental habit for future generations, maximizing the use of each and every resource as effectively as possible, is required to leave resources for our descendants. This is the effective and sustainable management of the Carrying Capacity of the planetary environment. It is recommended that all resources streams are characterized and managed in context of biophysical signatures.

The field of biophysical science deals with the application of physics to biological processes and phenomena. This approach could be used to merge non-renewable resources like metals with renewable resources like trees, and industrial resource consumption into a single coherent system. What is required, is the quantification of the global (and all subregions like Europe and the Nordic Frontier) natural resources in all their forms. We need to understand exactly what our industrial ecosystem requires and in what form. In parallel to this, an understanding on what these resources are needed for and in what applications. A new methodology of resource classification is now needed, as part of routine mapping, there is a dynamic system based link between what resources we have, what they are needed for and where they are needed. The total global resources need to be mapped in various levels of precision (reserves & resources, etc.). A more sophisticated standard of resource classification is now appropriate where the following needs to be mapped for all useful raw materials. These resource mapping parameters need to be in a form where they can be used in an exergy industrial entropy analysis (Reuter et al 2006)."

(https://www.centrumbalticum.org/en/publications/databank/databank/bsr_policy_briefing_2_2023.6958.news)