Do-It-Yourself Biology and the Rise of Citizen Biotech-Economies

From P2P Foundation
Jump to navigation Jump to search

* Article: Build Your Own Lab: Do-It-Yourself Biology and the Rise of Citizen Biotech-Economies. by Morgan Meyer. Special issue (#2) of the Journal of Peer Production on Bio/Hardware Hacking, 2012.



"in Build Your Own Lab: Do-It-Yourself Biology and the Rise of Citizen Biotech-Economies, another contribution to the invited comments section of the journal, Morgan Meyer presents three sites of biohacking practices: two laboratories in Europe and US, and the development of an open source tool for citizen biology labs. Cheap, available, recombinable, open objects for conducting life sciences research play a key role in enabling people to “domesticate” biology, along with platforms for knowledge and information sharing. This could enable the emergence of “citizen biotech-economies” that Meyer conceives as open, collective, distributed and accessible, and that might point to a democratisation of technoscience." (


The emergence of Citizen Biotech Economies

Morgan Meyer:

"do-it-yourself biology does not only represent an instance of “citizen science” (on this notion see Irwin, 1995), but that it also points to another issue: the formation of what we could call citizen economies of scientific equipment, or “citizen biotech-economies”. (I use the word economy in an open sense here, since in many cases we actually observe non-market economies at work; economies that, interestingly enough, also bring us back to the original meaning of the word economics, namely “managing a household”). In order to set up a laboratory in a garage, people depend on a multitude of objects, networks, and people. They heavily depend on other people interested in do-it-yourself biology, they rely on scientific institutions (even if indirectly), they rely on the sharing of information, on the circulation of objects, on Internet platforms, on emails, on donations, etc. In short, people who want to practice do-it-yourself biology need to tap into these emerging and open collectives of people, ideas and objects that are currently materialising around the notions of garage biology, DIY biology, biohacking, etc.2

These citizen biotech-economies are to be open, collective, distributed, and accessible. Their openness manifests itself in at least three ways.3 First, we observe an openness in terms of peoples’ material access to knowledge, to affordable objects, to infrastructures. Second, this openness is also socio-political: the networks, associations, laboratories and equipments dedicated to do-it-yourself biology are also imagined and presented in more general terms as means to democratise science and to engage and provide an access to biology to various kinds of people, each with their own background, motivation, and interests. Third, these economies are portrayed as an alternative, and sometimes even as opposed to, other, more “closed” economies (i.e. big business).4 These citizen biotech-economies thus come to stand for three things at once: a material re-distribution, a democratisation, and an alternative to established, technoscience." (

Solving the issue of scientific equipment

"a key issue for do-it-yourself biology: the cost and procurement of scientific equipment. Purchasing scientific equipment was, at least until very recently, expensive, difficult, uncommon, or just impossible. However, there are now various ways through which people can get hold of cheap scientific equipment. Do-it-yourself biologists might steal, buy used equipment, or use other people’s university address to get material shipped (Delfanti, 2010: 117). The paths through which the costs of setting up a laboratory at home (or a community lab) are becoming more affordable include: buying used equipment, transforming equipment, or finding alternatives to equipment.

Examples of alternative and transformed equipment that frequently feature on websites, blogs, videos, or articles devoted to garage and do-it-yourself biology include: the conversion of webcams into microscopes; the Open PCR and the LavaAmp (as alternatives to PCR machines); the Open Gel Box to do gel electrophoresis; incubating test tubes in one’s own armpits instead of using a conventional incubator; purifying DNA with a mix of non-iodized table salt, meat tenderizer, and shampoo; or using the DremelFuge instead of a centrifuge.

The DremelFuge, for example, was created in 2009 by Cathal Garvey in Ireland. This device can be used as a substitute to a conventional centrifuge. The idea is to put an adapter on a power drill or any other rotary tool in order to spin test tubes. Through this device, the costs for centrifuging are decreased from 500 to around 55 dollars. Garvey advertises his invention as follows: “A centrifuge attachment for drills or rotary tools which spins them with even more power than the official thing, and costs a tiny fraction of the price to make and operate”. On a video posted on YouTube1, instructions for how to use the device are given: we see Cathal Garvey explaining the device, showing how it works, how to put tubes into the device, with what speed of rotation it works, and giving some precautionary notes, etc. The DremelFuge has some key advantages for do-it-yourself biologists: it is rather cheap, easy to use, small and combinable with a tool found in many households, a power drill. In other words, it is a relatively mobile object. (This transportability of tools and materials helps to explain why some scientific fields are more open to amateurs than others (see Meyer, 2008)). Another example is the Open Gel Box, which is delivered as a package including documents (assembly instructions and usage protocols), wires and other pieces, which people can assemble at home (like IKEA furniture) and then use or even improve.

Do-it-yourself biologists can buy these artefacts either via the websites of producers or, in the case of used equipment, via eBay, Amazon, or Craiglist. For these and other kinds of equipment (i.e. the DremelFuge), there are video instructions to build and use them on sites such as YouTube or Vimeo. And, on many blogs and websites dedicated to do-it-yourself biology, there is information about where and how to purchase, get for free, build, or transform equipment. The Internet plays in fact an important role for do-it-yourself biologists: it allows and encourages people to “freely reveal” (see von Hippel, 2005: 77-91) their innovations; it provides platforms through which used equipment can be sold and bought, ways for people to share instructions and information for how to find and build alternative tools, and, more generally, a medium to connect people interested in do-it-yourself biology. In fact, the Internet is part and parcel of the emerging, alternative, and multifarious economy of scientific equipment that sustains do-it-yourself biology.

Another way for people to learn how to use equipment is, of course, through workshops. An example here is the SymbioticA Biotech Art Workshop, a series of workshops organised at the University of Western Australia. Workshop participants are taught, for instance, alternative methods for biotechnical experiments, i.e. for DNA extraction, for the preparation of culture media, for building a sterile laminar flow hood out of home construction material (Catts and Cass, 2008: 150; da Costa, 2008: 373). The Biotech Hobbyist is yet another example of a forum (a magazine in this case) that offers “step-by-step instructions and advice on how to obtain the necessary materials”, distributes its own kits, and calls for people to build laboratories at home (da Costa, 2008: 373, 376).

We see that do-it-yourself biology is not only dependent on scientific equipment becoming cheaper and more available, the mutability of objects is also crucially important. Do-it-yourself biology favours so-called “creative workarounds” (Ledford, 2010) that is, inventive ways to work without conventional and expensive scientific material. This article has revealed two kinds of creative workarounds. First, people use creative workarounds around objects when they transform and combine them and use them in unusual ways. And, on the other hand, they use creative workarounds around institutions, when they try to circumvent established industry-university business linkages (i.e. via donations, stealing, or using university addresses)." (

A solution: DIYBio Community Laboratories

Example, La Paillasse, Paris

Morgan Meyer:

"An example of a community laboratory is the association called La Paillasse which was established in Paris by Thomas Landrain, a PhD student at the Institute for Systems and Synthetic Biology. La Paillasse describes itself as “a physical and web platform for citizen scientists, amateur biologists, researchers and entrepreneurs that fosters open-science, debates and hands-on practice of Biotechnologies” and as “a group of passionate people about biology, each with his or her own area of expertise, interest and dedication”. Informally created in 2008 and officially launched in 2011, the association works in a “DIYbio spirit”, is “accessible to anybody” and aims for “very open, diverse and possibly opposed approaches to biology”. The mailing list of the association counts some 70 members of which there are 10 “core” people.

La Paillasse is currently located in two spaces. The first one is “totally open” and is dedicated to discussions and projects “that don’t necessitate particular materials (computer projects, electronic projects or “light” biology for example)”. The second space, more regulated, contains machines and equipment for projects that are “more weighty”. The latter is based at the Electrolab at Nanterre (an area north east of Paris). If at the beginning of its history, the association only disposed of a very small surface (only a few square metres of a working bench in the Electrolab laboratory), since November 2011 La Paillasse occupies a real laboratory of 15 square meters. It was above all Génopôle, the prime institution for genetics research in France, and a former laboratory from the municipality of Paris that have donated scientific equipment to the lab, including centrifuges, fridges, a PCR machine, and shakers. But getting other material proves more difficult. One of the founding members of La Paillasseexplains: “We still lack consumables, enzymes, bacteria. I don’t knowhow we will get our material fromsuppliers, they are not used to dealwith associations. It’sthe unknown,we are the firstin France”. In terms of scientific tools, the association’s aims include “developing and distributing the tools needed to perform biological studies and experiments” and thereby to be “contributing to the international biohacker community by releasing our tools in an open source format”.

La Paillasse works on several projects: a bioethics workshop that aims to define the current limits of French and European legislation concerning the manipulation of biological and chemical samples and thereby “help La Paillasse to provide a legal framework for its experimental and social activities”; the construction of kits to detect GMOs in food; the creation of renewable energy from waste, bacteria and algae; projects to do with informatics, and so on. However, besides being a scientific project, La Paillasseis also explicitly a project with a political aim. One of the founders of the association argues: “Citizens must have in their hands a counter-power to participate in the societal choices concerning the use of these technologies”. (

More Information