Intelligence as a Planetary Scale Process: Difference between revisions
unknown (talk) No edit summary |
unknown (talk) No edit summary |
||
| Line 17: | Line 17: | ||
We argue that explorations of planetary intelligence, defined as the acquisition and application of collective knowledge operating at a planetary scale and integrated into the function of coupled planetary systems, can prove a useful framework for understanding possible paths of the long-term evolution of inhabited planets including future trajectories for life on Earth and predicting features of intelligentially steered planetary evolution on other worlds." | We argue that explorations of planetary intelligence, defined as the acquisition and application of collective knowledge operating at a planetary scale and integrated into the function of coupled planetary systems, can prove a useful framework for understanding possible paths of the long-term evolution of inhabited planets including future trajectories for life on Earth and predicting features of intelligentially steered planetary evolution on other worlds." | ||
=Contents= | |||
"First, we will examine whether it is possible to consider intelligence, or some form of cognition, operating on a planetary scale even on those worlds without a planetary-scale technological species (Fig. 1(a) and (b)). This would require some form of collective cognition to have been a functional part of the biosphere for considerably longer than the relatively short tenure of human intelligence on Earth. If true, then the inherently global nature of the complex, networked feedbacks which occur in the biosphere may itself imply the operation of an ancestral planetary intelligence. Second, we wish to consider whether the changes humans have been introducing to the planet through our industrial activitiesthe changes marking the ‘Anthropocene’ geological epoch (Crutzen, 2002; Steffen et al., 2015)– may be understood as a transition in both the kind and level of global cognitive activity. Here, we are interested in the emergence of networks of processes that originate with human agency but become active and autonomously operate on levels beyond individuals. Thus, we will consider the idea of an emerging technosphere and its place in the Anthropocene (Fig. 1(c), Haff, 2014a, 2014b). | |||
A focus on the Anthropocene allows us to assess the sustainability requirements for a long-lived industrial planetary civilization through the lens of planetary intelligence. Many current threats to sustainability are characterized by inadvertent planetary-scale changes in the environment. These are caused by our aggregate activities being unguided by an awareness of their global scale consequences (Grinspoon, 2016). It is not hard to argue that the long-term survival of our, or any global scale ‘project of civilization’ will require a fundamentally different mode of planetary-scale behaviour in which knowledge of planetary-scale impacts feeds back on, and modulates, behaviour in an intentional loop (e.g. perhaps mediated by artificial intelligence as our systems become increasingly integrated). This means we will need to consider the question of timescales within such feedback loops and also the scale at which decisions are made. We note that decisions favouring the sustainability of collectives may not be the same as the preferences favoured by individuals. A clear but simple example in social choice theory is Arrow’s Impossibility Theorem. Arrow’s theorem demonstrates how, based on a simple set of reasonable assumptions, there is no possible way to rank the preferences of choices made by individuals into a ranked set of preferences for a collective (Arrow, 1950). That is, a collectives’ rankings among a set of choices will not reflect that of its individual members in any procedural way. The idea of planetary-scale collective cognition brings with it the question: would planetary behaviour dominated by stabilizing feedback between awareness and consequences represent a new type, or new level of planetary intelligence? If so, then our concept also takes on an aspirational quality. A deeper understanding of the transition to this mode could be useful for the project of building a sustainable global civilization (United Nations, 2015). Finally, we wish to generalize these questions beyond the singular example of terrestrial history by asking whether planetary intelligence is likely to be a property of some (or perhaps most) inhabited worlds elsewhere in the universe, or at least the longlived ones we are most likely to remotely detect (Fig. 1(d)). This implies that past, current and potential future transitions in Earth’s history may have counterparts on other planets. Work on the ‘Astrobiology of the Anthropocene’ (Haqq-Misra and Baum, 2009; Frank and Sullivan, 2014; Frank et al., 2017, 2018; Mullan and Haqq-Misra, 2019) has already indicated that technological civilizations engaging in large-scale energy harvesting could trigger strong climate-changing feedbacks. The transition to long-term sustainable forms of such civilizations (if such a thing is possible) may have general, generic features which themselves involve transitions in planetary intelligence (Grinspoon, 2016). This line of inquiry can help us to both reflect upon terrestrial evolution from a less parochial perspective and formulate potential paths and states for planetary scale cognition on other planets. Such an effort may also be useful in deriving new observable diagnostics for ‘exo-civilizations’ by articulating characteristics of technological civilizations which can be detected from a distance (aka ‘technosignatures’). Thus, a characterization of planetary intelligence and its role in planetary evolution may be particularly useful for technosignature studies which currently represent a new and highly active direction in astrobiology and SETI (Genio and Wright, 2018; Wright et al., 2020)." | |||
=Typology= | |||
Frank A, Grinspoon D, Walker S: | |||
Four possible domains of planetary intelligence. | |||
(a) On a planet with an immature biosphere (such as the Earth during the Archean Eon) there are insufficient feedback loops between life and geophysical coupled systems to exert strong co-evolution. | |||
(b) On a planet with a mature biosphere (such as Earth after the Proterozoic) the biosphere exerts strong forcing on the geophysical state establishing full co-evolution of the entire system. This feedback may provide some degree of long-term stabilizing (i.e. Gaian) modulations for the full system. | |||
(c) On a planet with an immature Technosphere (represented by the current Anthropocene Earth) feedbacks from technological activity produce strong enough forcing on the coupled planetary system to drive it into new dynamical states. These forcings however are unconstrained by intention relative to the health of the civilization producing the technology. | |||
(d) On a planet with a mature Technosphere, feedback loops between technological activity and biogeochemical and biogeophysical states have been intentionally modified to ensure maximum stability and productivity of the full system. Alongside each planetary image, we show a schematic atmospheric spectrum. | |||
An immature biosphere would show an atmosphere mostly in equilibrium dominated perhaps by CO2. In a mature biosphere life would have changed atmospheric chemistry leading to a highly non-equilibrium state such as perhaps high concentrations of O2. In an immature Technosphere new ‘pollutant’ species appear, such as CFCs, while industrial activities such as combustion may alter the abundance of other preexisting gases like CO2 and methane. In a mature Technosphere all atmospheric constituents may have their concentrations modified to produce long-term stable and productive states for the full (civilization + biosphere) system. This is represented via a range of possible peaks for different constituents." | |||
(https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5077C784D7FAC55F96072F7A7772C5E5/S147355042100029Xa.pdf/intelligence-as-a-planetary-scale-process.pdf) | |||
=Excerpts= | |||
==Definition of [[Planetary Intelligence]]== | |||
Frank A, Grinspoon D, Walker S: | |||
"Our explicit definition of planetary intelligence is the acquisition and application of collective knowledge, operating at a planetary scale, which is integrated into the function of coupled planetary systems. One nascent example would be the global response to the planetary-scale crisis of ozonosphere erosion by CFCs. Another, still very much a work in progress, could be a global response to the crisis of anthropogenic global warming. However, we call these examples ‘nascent’ because, while they involve a global coordinated response to a potential existential threat, the decision-making is at the level of localized activities of individuals and governments. As wewill describe, a transition to global planetary intelligence should include a kind of intelligence that is more than the aggregate sum of the localized activities of life on smaller scales. We are interested in properties that exist at the scale of biospheres and/or technospheres (where technospheres are the aggregate planetary activity of technology; Herrmann-Pilath, 2018), and in their coupling to other planetary systems (e.g. geospheres), that are not apparent in individual organisms and subsystems comprising a biosphere or technosphere. Thus, the cognitive activity we are interested in must operate via feedback loops that are global in scale, coordination and operation. The concept of ‘human computation’ is one relevant example. Human computation includes examples where humans are computational elements in information processing systems, such as crowd-sourced activities like wiki editing or human-assisted AI (Michelucci et al., 2015). In addition, by defining planetary intelligence in terms of cognitive activity – i.e. in terms of knowledge that is only apparent at a global scale– we are explicitly broadening our view of technological intelligence beyond species that can reason or build tools in the traditional sense. We note that terms such as ‘knowledge’ and ‘cognition’ are usually reserved to describe individuals, but it is exactly our goal to push these concepts and determine in what sense they can apply to planetary-scale processes. We will clarify these points in the sections that follow. There are successive distinct domains where we wish to explore the operation, and effect, of planetary intelligence. We will argue that each relates to a different, but successive, phase of planetary evolution." | |||
(https://www.cambridge.org/core/services/aop-cambridge-core/content/view/5077C784D7FAC55F96072F7A7772C5E5/S147355042100029Xa.pdf/intelligence-as-a-planetary-scale-process.pdf) | |||
[[Category:Intelligence]] | [[Category:Intelligence]] | ||
Revision as of 07:29, 11 November 2022
* Frank A, Grinspoon D, Walker S (2022). Intelligence as a planetary scale process. International Journal of Astrobiology 21,47–61. doi
Abstract
"Conventionally, intelligence is seen as a property of individuals. However, it is also known to be a property of collectives. Here, we broaden the idea of intelligence as a collective property and extend it to the planetary scale. We consider the ways in which the appearance of technological intelligence may represent a kind of planetary scale transition, and thus might be seen not as something which happens on a planet but to a planet, much as some models propose the origin of life itself was a planetary phenomenon. Our approach follows the recognition among researchers that the correct scale to understand key aspects of life and its evolution is planetary, as opposed to the more traditional focus on individual species.
We explore ways in which the concept may prove useful for three distinct domains:
- Earth Systems and Exoplanet studies;
- Anthropocene and Sustainability studies;
- and the study of Technosignatures and the Search for Extraterrestrial Intelligence (SETI).
We argue that explorations of planetary intelligence, defined as the acquisition and application of collective knowledge operating at a planetary scale and integrated into the function of coupled planetary systems, can prove a useful framework for understanding possible paths of the long-term evolution of inhabited planets including future trajectories for life on Earth and predicting features of intelligentially steered planetary evolution on other worlds."
Contents
"First, we will examine whether it is possible to consider intelligence, or some form of cognition, operating on a planetary scale even on those worlds without a planetary-scale technological species (Fig. 1(a) and (b)). This would require some form of collective cognition to have been a functional part of the biosphere for considerably longer than the relatively short tenure of human intelligence on Earth. If true, then the inherently global nature of the complex, networked feedbacks which occur in the biosphere may itself imply the operation of an ancestral planetary intelligence. Second, we wish to consider whether the changes humans have been introducing to the planet through our industrial activitiesthe changes marking the ‘Anthropocene’ geological epoch (Crutzen, 2002; Steffen et al., 2015)– may be understood as a transition in both the kind and level of global cognitive activity. Here, we are interested in the emergence of networks of processes that originate with human agency but become active and autonomously operate on levels beyond individuals. Thus, we will consider the idea of an emerging technosphere and its place in the Anthropocene (Fig. 1(c), Haff, 2014a, 2014b).
A focus on the Anthropocene allows us to assess the sustainability requirements for a long-lived industrial planetary civilization through the lens of planetary intelligence. Many current threats to sustainability are characterized by inadvertent planetary-scale changes in the environment. These are caused by our aggregate activities being unguided by an awareness of their global scale consequences (Grinspoon, 2016). It is not hard to argue that the long-term survival of our, or any global scale ‘project of civilization’ will require a fundamentally different mode of planetary-scale behaviour in which knowledge of planetary-scale impacts feeds back on, and modulates, behaviour in an intentional loop (e.g. perhaps mediated by artificial intelligence as our systems become increasingly integrated). This means we will need to consider the question of timescales within such feedback loops and also the scale at which decisions are made. We note that decisions favouring the sustainability of collectives may not be the same as the preferences favoured by individuals. A clear but simple example in social choice theory is Arrow’s Impossibility Theorem. Arrow’s theorem demonstrates how, based on a simple set of reasonable assumptions, there is no possible way to rank the preferences of choices made by individuals into a ranked set of preferences for a collective (Arrow, 1950). That is, a collectives’ rankings among a set of choices will not reflect that of its individual members in any procedural way. The idea of planetary-scale collective cognition brings with it the question: would planetary behaviour dominated by stabilizing feedback between awareness and consequences represent a new type, or new level of planetary intelligence? If so, then our concept also takes on an aspirational quality. A deeper understanding of the transition to this mode could be useful for the project of building a sustainable global civilization (United Nations, 2015). Finally, we wish to generalize these questions beyond the singular example of terrestrial history by asking whether planetary intelligence is likely to be a property of some (or perhaps most) inhabited worlds elsewhere in the universe, or at least the longlived ones we are most likely to remotely detect (Fig. 1(d)). This implies that past, current and potential future transitions in Earth’s history may have counterparts on other planets. Work on the ‘Astrobiology of the Anthropocene’ (Haqq-Misra and Baum, 2009; Frank and Sullivan, 2014; Frank et al., 2017, 2018; Mullan and Haqq-Misra, 2019) has already indicated that technological civilizations engaging in large-scale energy harvesting could trigger strong climate-changing feedbacks. The transition to long-term sustainable forms of such civilizations (if such a thing is possible) may have general, generic features which themselves involve transitions in planetary intelligence (Grinspoon, 2016). This line of inquiry can help us to both reflect upon terrestrial evolution from a less parochial perspective and formulate potential paths and states for planetary scale cognition on other planets. Such an effort may also be useful in deriving new observable diagnostics for ‘exo-civilizations’ by articulating characteristics of technological civilizations which can be detected from a distance (aka ‘technosignatures’). Thus, a characterization of planetary intelligence and its role in planetary evolution may be particularly useful for technosignature studies which currently represent a new and highly active direction in astrobiology and SETI (Genio and Wright, 2018; Wright et al., 2020)."
Typology
Frank A, Grinspoon D, Walker S:
Four possible domains of planetary intelligence.
(a) On a planet with an immature biosphere (such as the Earth during the Archean Eon) there are insufficient feedback loops between life and geophysical coupled systems to exert strong co-evolution.
(b) On a planet with a mature biosphere (such as Earth after the Proterozoic) the biosphere exerts strong forcing on the geophysical state establishing full co-evolution of the entire system. This feedback may provide some degree of long-term stabilizing (i.e. Gaian) modulations for the full system.
(c) On a planet with an immature Technosphere (represented by the current Anthropocene Earth) feedbacks from technological activity produce strong enough forcing on the coupled planetary system to drive it into new dynamical states. These forcings however are unconstrained by intention relative to the health of the civilization producing the technology.
(d) On a planet with a mature Technosphere, feedback loops between technological activity and biogeochemical and biogeophysical states have been intentionally modified to ensure maximum stability and productivity of the full system. Alongside each planetary image, we show a schematic atmospheric spectrum.
An immature biosphere would show an atmosphere mostly in equilibrium dominated perhaps by CO2. In a mature biosphere life would have changed atmospheric chemistry leading to a highly non-equilibrium state such as perhaps high concentrations of O2. In an immature Technosphere new ‘pollutant’ species appear, such as CFCs, while industrial activities such as combustion may alter the abundance of other preexisting gases like CO2 and methane. In a mature Technosphere all atmospheric constituents may have their concentrations modified to produce long-term stable and productive states for the full (civilization + biosphere) system. This is represented via a range of possible peaks for different constituents."
Excerpts
Definition of Planetary Intelligence
Frank A, Grinspoon D, Walker S:
"Our explicit definition of planetary intelligence is the acquisition and application of collective knowledge, operating at a planetary scale, which is integrated into the function of coupled planetary systems. One nascent example would be the global response to the planetary-scale crisis of ozonosphere erosion by CFCs. Another, still very much a work in progress, could be a global response to the crisis of anthropogenic global warming. However, we call these examples ‘nascent’ because, while they involve a global coordinated response to a potential existential threat, the decision-making is at the level of localized activities of individuals and governments. As wewill describe, a transition to global planetary intelligence should include a kind of intelligence that is more than the aggregate sum of the localized activities of life on smaller scales. We are interested in properties that exist at the scale of biospheres and/or technospheres (where technospheres are the aggregate planetary activity of technology; Herrmann-Pilath, 2018), and in their coupling to other planetary systems (e.g. geospheres), that are not apparent in individual organisms and subsystems comprising a biosphere or technosphere. Thus, the cognitive activity we are interested in must operate via feedback loops that are global in scale, coordination and operation. The concept of ‘human computation’ is one relevant example. Human computation includes examples where humans are computational elements in information processing systems, such as crowd-sourced activities like wiki editing or human-assisted AI (Michelucci et al., 2015). In addition, by defining planetary intelligence in terms of cognitive activity – i.e. in terms of knowledge that is only apparent at a global scale– we are explicitly broadening our view of technological intelligence beyond species that can reason or build tools in the traditional sense. We note that terms such as ‘knowledge’ and ‘cognition’ are usually reserved to describe individuals, but it is exactly our goal to push these concepts and determine in what sense they can apply to planetary-scale processes. We will clarify these points in the sections that follow. There are successive distinct domains where we wish to explore the operation, and effect, of planetary intelligence. We will argue that each relates to a different, but successive, phase of planetary evolution."