MondoNet

From P2P Foundation
Jump to: navigation, search

URL = http://www.mondonet.org [1]

Read Valkyrie Ice on why Mondo.net is important


Description

"Sinnreich envisions a new internet that uses mesh networking to produce a stable, ad hoc, global wireless network in which each user is a router, server and client combined, and in which no single state or organization can effectively censor or surveil the population on a broad scale.

To date, Sinnreich and his team have developed a set of “social specifications” describing the functionalities required of MondoNet, and are in the process of mapping these specifications to open technological platforms. Their present aim is to develop a fully open, global development process akin to the collaborative environments surrounding Linux and Wikimedia."


Adam Sinnreich:

"Although the Internet is highly decentralized in its communication and social patterns, its technical and regulatory foundations are extremely hierarchical, due to centralized control by organizations like ICANN and the oligopolistic ownership of the access business by a handful of broadband ISPs and wireless carriers (Wu, 2010). As a result of this centralization, digital communications are compromised by a degree of surveillance and censorship that would be unthinkable in traditional social arenas, threatening our cyberliberties and “e-speech” rights (Sinnreich & Zager, 2008). Seemingly disparate issues like network neutrality, intellectual property treaties and national security measures, taken in combination, threaten to produce a communications environment in which innovation is stifled and normative cultural behaviors are criminalized and punished by censorship, fines and/or imprisonment. One potential solution to this problem would be to create a new communications platform based on existing Internet protocols, but with a decentralized infrastructure free of the bottlenecks and chokepoints that plague the current system. Specifically, this new infrastructure would use mesh networking technologies to produce a stable, ad hoc global wireless network in which each peer is a router, server and client combined, and in which no single state or organization can effectively censor or surveil the population on a massive scale." (http://agoristradio.com/?p=413)



Principles

The 10 Social Specifications for a Democratized Network

1. Decentralized

2. Universally Accessible

3. Censor-Proof

4. Surveillance-Proof

5. Secure

6. Scalable

7. Permanent

8. Fast (Enough)

9. Independent

10. Evolvable


More extented description:


1. Decentralized

The network should not be operated, maintained, or in any way reliant upon a single or minimally differentiated set of entities or technologies. No individual, entity or group should be central to the network to the extent that their absence would measurably impact its functionality or scope. Network participation should not require access to fixed, physical infrastructure of any sort.


2. Universally Accessible

The requisite technology and expertise required to participate in the network should be available at minimal cost and effort to every human being on the planet. Furthermore, all users should be able to extend the network’s content and functionality to suit their own needs, or those of others. No aspect of the network’s functioning should be reliant upon proprietary technologies, information or capital.


3. Censor-proof

The network should be resistant to both regulatory and technical attempts to limit the nature of the information shared, restrict usage by given individuals or communities, or render the network, or any portion of it, inoperable or inaccessible.


4. Surveillance-proof

The network should enable users to choose exactly what information they share with whom, and to participate anonymously if they so desire. Users should only have access to information if they are the designated recipients, or if it has been published openly.


5. Secure

The network should be organized in a way that minimizes the risk of malicious attacks or engineering failure. Information exchanged on the network should meet or exceed the delivery rate and reliability of information exchanged via the Internet.


6. Scalable

The network should be organized with the expectation that its scale could reach or even exceed that of today’s Internet. Special care should be taken to address to the challenge of maintaining efficiency without the presence of a centralized backbone.


7. Permanent

The network’s density and redundancy should be great enough that, despite its ad hoc nature, it will persistently operate on a broad scale, and be available in full to any user within range of another peer.


8. Fast (enough)

The network should always achieve whatever speed is required for a “bottom line” level of social and cultural participation. At present, we assert that the network’s data transfer rate should, at a minimum, be enough for voice-over-IP (VoIP) communications, and low-bitrate streaming video.


9. Independent

While the network will have the capacity to exchange information with Internet users and nodes, it should be able to operate independently, as well. A large-scale failure or closure of Internet infrastructure and content should have minimal effect on the network’s operations.


10. Evolvable

The network should be built with future development in mind. The platform should be flexible enough to support technologies, protocols and modes of usage that have not yet been developed." (http://www.acceler8or.com/2011/07/mondonet-fights-the-internet-power-an-interview-with-adam-sinnreich/)


Interview

R.U. Sirius interviews co-founder Aram Sinnreich:


"RU SIRIUS: John GIlmore famously said, “The Internet interprets censorship as damage and routes around it? True or not? And what’s missing from the Internet as it is, structurally, that requires an alternative creation for mass p2p activity?

ARAM SINNREICH: Gilmore was really talking about TCP/IP, and node-level routing. While it’s true that these protocols are inherently decentralized and therefore very resistant to censorship, the problem comes at the infrastructural level, which is far more centralized. The Internet may have a billion nodes now, but only a handful of companies control the Internet’s “backbone,” the broadband ISP market, and the wireless data services market (and two companies, AT&T and Verizon, are the dominant players in each of these sectors in the US). That means that no two Internet users in the US can communicate with one another without their data passing through the hands of one of these companies.

Unless the data is encrypted (in which case, it can be dumped if the companies choose), it is vulnerable to packet-sniffing or other forms of inspection. This is not a hypothetical situation; these companies have long histories of inspecting packets for the purposes of (a) commercially preferred treatment, e.g. non-neutral network operations; (b) commercial exploitation, e.g. consumer profiling; and (c) political censorship and surveillance, either at the behest of the federal government (think NSA wiretaps) or for reasons of corporate ideology (e.g. AT&T censoring an Eddie Vedder webcast critical of President Bush; Verizon blocking text messages between pro-choice groups and their members).

Thus, only a network that replicates the decentralization of nodes at an infrastructural level — or, to put it another way, one in which the nodes themselves are the backbones — can eschew the Internet’s vulnerability to censorship.


RU: There seems to be a lot of activity going on in a similar direction to MondoNet. Are you aware of other efforts and how does your plan differ?

AS: MondoNet was a germ of an idea in my mind from about 2004, when I first read Tim Wu’s work on Net Neutrality, and the idea of mesh networking as a democratizing force was something I discussed with my USC doctoral professor Francois Bar at the time. In fact, a video about mesh networking that Bar produced with my contributions in 2005-6 is available here (see the automata video). So this has been percolating for a while. However, it wasn’t until I started my tenure-track position at Rutgers in 2010 that I had the support to begin doing something with the idea. I taught a doctoral course in the fall called “Visions and Revisions of Cyberspace,” and two of my students in that class, Nathan Graham and Aaron Trammell, shared my enthusiasm for addressing the social and political dimension of network technologies. So at the end of the fall semester, we applied for a small grant to start MondoNet, and have been working on it ever since.

It’s been a gratifying surprise to see how much the concept of mesh networking has taken hold across disciplines and even in the mainstream press in the seven or eight months since we started our work. In January, 2011, OpenMesh launched their initiative, and we started sharing our work on MondoNet.org. In February, Hillary Clinton gave her “Internet freedom” speech, and a few days later, the Freedom Box initiative announced itself in the pages of the New York Times. In April, I announced MondoNet at my TEDxUSC talk.

Now, it seems every day we read a new article or hear about a new initiative along these lines. And what’s really cool is that all of these networking initiatives have started to network as well. We’ve gotten code-sharing offers from other projects, been invited to Google Groups uniting researchers in this field, and are even planning our own Rutgers mini-conference on the subject later this year.

Where I think we differ, and can offer some vital perspective, is in our theoretical orientation. Unlike most of the other initiatives out there, we’re not engineers or policy wonks. We’re critical information scholars, bringing perspectives from social science, political economy and even cultural studies into the mix. This is why my TEDx talk and our soon-to-be-published article in The Information Society begin with what we call “social specifications,” emphasizing the qualities that free society requires from a network, rather than the capacities that given technologies can offer us. Before we even start thinking about protocols and feature sets, we want to be perfectly clear about what we’re trying to accomplish. So today, wireless ad hoc networks might be the best solution to address these social specifications, but ten years from now, there may be other options. Either way, we’re wedded to the principles, not to the tech.

Of course, we’re just as interested in making free and open networked communications a reality as anyone else out there. Our immediate plan is to test a “virtual” version of MondoNet in three different types of community, and to operationalize our social specifications through a variety of different data measurements. Once we are confident that MondoNet will actually move the needle on these target goals (e.g. accessibility or resistance to censorship), we’ll start building actual MondoNet software to spec. And the more we can make use of other projects’ openly-licensed code in the process, the happier we’ll be.

RU: I wonder if this thing scales, or if you want it to. For example, for all the horrors of Facebook, the charm is in the fact that there are like a billion people there. I can go find my old high school buddy or my great aunt. And while smaller decentralized alternative networks might be an advantage to, say, revolutionaries in Egypt or wherever, in that the government would find it harder to shut it down, there’s the chance that it won’t reach a lot of the people.

AS: We definitely want it to scale — not just in terms of growth, but in terms of applicability within social milieus of any size. As you point out, it needs to work for small groups of dissenters within oppressive environments, but it also needs to provide a large-scale platform for an uncorruptible public sphere. In my ideal future, the entire globe will be covered with a stable, decentralized, peer-to-peer communications mesh, which can be used as a platform for public, closed-group, and person-to-person information exchanges.

As to Facebook’s “charm,” you’re certainly right that size matters when it comes to networks. I’m sure you’re familiar with Metcalfe’s law, which states that the value or power of a communications platform grows exponentially as the number of peers grows incrementally. And with MondoNet, this applies to an even greater extent, because users will rely on one another not only as senders and recipients of information, but as components of the network itself. All that being said, we’re not trying to replace or rival Facebook. In fact, we’d be delighted if Facebook chose to mirror its servers on MondoNet peers one day. We’re aiming to be pure infrastructure, simply a reliably secure and open alternative to the increasingly draconian and expensive broadband and wireless commercial networks.

RU: I’m amazed that Rutgers is supporting this (so far.) Certainly the government takes very seriously their abilities to surveil communications (going all the way back to the fight over the Clipper Chip in the mid-90s). Do you expect a visit from some friendly folks at Homeland Security if this becomes viable?

AS: Yes, I’m sure that once we move from the talking phase to the doing phase, someone with national security concerns will come a-knocking. They’ll probably ask us to build in a “back door” to allow wiretaps and other forms of surveillance, just like they have for all the other network service operators. But the beauty of the technology we’re building is, such a back door would be impossible from an engineering standpoint. There’s no central backbone or other point of presence through which the majority of bits will flow. Furthermore, the platform will enable native peer-to-peer encryption (like PGP), which means that each individual node will have the ability to determine the visibility or obscurity of the information it sends. And, because the code is all open-source, even if we did create some kind of workaround back door, other developers could simply engineer it back out, and release an improved, higher-security version.

I’m not surprised that Rutgers is being supportive, though I am gratified — after all, free speech, social equality and technological innovation are key aims of our school, so we’re pretty much in line with the mission statement. However, it is a state university, so I suppose if federal regulators got a bee in their bonnet about the project, they could probably exert some political force to get the university to kibosh us. Hopefully, by the time that happens, we’ll have enough research, code, and project inertia to continue independently.


RU: What sort of time frame do you think you’re looking at before this starts testing and how long after that do you think it might become viable for lots of people?

AS: As social scientists, we ask questions first and act second. So our first order of business will be to test the premises of MondoNet by creating a “virtual” version for field research. Will a peer-to-peer mobile mesh network actually address the social and political flaws of the existing Internet? Will it increase accessibility? Decentralize communications? Prove resistant to censorship and surveillance? We’re currently in talks with a mobile software developer to create this virtual MondoNet, and hopefully we will test it over the next year.

Once we determine whether our strategy actually does what we hope it does, then we can begin to develop the software itself. The good news is, many of the components (e.g. mesh networking protocols) are already developed or in development under open license elsewhere, so we don’t need to reinvent the wheel. We see our role more as integrating these back-end technologies, creating an easy-to-use and widely accessible user interface, and then shepherding the project development within the open source/free software community. Given that we will probably need to rely on grant money to do this, a realistic timeframe would be about 3 years till public release.

Coming from the business world, I realize that this might seem like a long development cycle, but we want to get it right the first time, and build a strong foundation for future development by ourselves and other coders and communities. If we do it right, the project should take on a life of its own, and the code will be adapted for uses and sociopolitical contexts we can’t predict at this point.


RU: Broadly speaking, there has been a lot of controversy over the years about the liberatory or revolutionary potential of the internet, ranging from technotopian imaginings to scathing indictments. What’s your view?

AS: Great question. I actually teach a doctoral course on this topic (Nathan and Aaron — both project participants — took it last year). The short answer is, all technologies are inherently neutral. They can be used toward both emancipatory and totalitarian ends, and usually both apply. Through laws, regulations, architecture and social norms, different interests work to redefine the role of technology to achieve the social outcomes they seek. Right now, many regulatory and architectural developments are pushing the platform towards informatic totalitarianism, though emerging social norms continue to explore its emancipatory potential. We see MondoNet as an architectural intervention, reversing the “cable-ization” of the network and undermining the power of regulators to centralize control over information flow.

As a final word, I would also like to mention that this process of social reorganization through evolving communication technologies will never end. It will never reach a happy medium, a comfortable resting place, or a peaceable stasis. As the pace of technological innovation continues to accelerate relative to more organic human processes, communications networks will continue to play an increasingly central role in our politics, and the stakes will grow ever greater. Even if MondoNet is wildly successful, and we achieve our dream of a decentralized, universally distributed global mesh in 20 years, we can’t expect the story to end there.

Nanotechnology, quantum computing, and genetic science are just a few of the emerging fields that have far-reaching political and communication implications, and thus far these implications have been primarily addressed within the discourse of science fiction rather than research and advocacy. That’s why each of us needs to be aware of the power dynamics surrounding technological innovation, and to continually ask ourselves how we can intervene to help shape a future we’d want to live in." (http://www.acceler8or.com/2011/07/mondonet-fights-the-internet-power-an-interview-with-adam-sinnreich/)

More Information