Monitoring, Incentivizing and Sanctioning Community Behavior Through the Blockchain

From P2P Foundation
Jump to navigation Jump to search


Discussion

David Rozas et al. :

"Monitoring:

This principle concerns some participants in the community acting as monitors of behavior in accordance with the rules derived from collective choice arrangements. These participants should be accountable to the rest of the community. Stern (2011) argues that this principle remains essential for global commons, although it becomes more difficult to implement.

Several of the affordances of blockchain for commons governance remain potentially useful in the context of global digital commons. On the one hand, the affordances for self-enforcement (II) of smart contracts and, more widely, that of autonomous automatization (III) – without human mediation – provide further means to track and communally fiscalize new aspects of the organizational processes. Secondly, the blockchain affordance of increasing transparency (V) may enable higher accountability, and might lead to more peer-to-peer forms of monitoring. Peer-to-peer monitoring is usual in CBPP communities, as part of their strong culture of openness. This culture of openness also involves the opening of the data generated in the collaboration processes. This constitutes a useful means for CBPP communities to successfully carry out and scale up their processes of monitoring.

Thus, blockchain might facilitate the monitoring of community rules. On the one hand, smart contracts represent rules of the online communities, which may include automatic mechanisms for specific monitoring. On the other hand, all interactions are recorded in the blockchain and can be observed in real time by any party. This has already enabled users to detect and mitigate the effects of users behaving against the perceived community rules. For instance, in 2017 a hacker stole $32 million worth of cryptocurrencies in Ethereum, exploiting a software vulnerability. As a first response, a group of users called “The White Hat Group” stole all the other accounts affected by the same vulnerability ($208 million), in order to avoid it being stolen by other hackers taking advantage of it. Afterward, they returned that money to their owners, once the vulnerability was fixed (Zetzsche et al., 2018).

The use of blockchain to support transparent and open peer-reviewing (Ford, 2013) is another example of the applications of blockchain for community monitoring. This is seen in the blockchain-based system implemented by Tenorio-Fornés et al. (2019), intended to increase the quality and accountability of peer-reviewing practices in academia. The system relies upon three pillars supported by decentralized technologies (Tenorio-Fornés et al., 2019, 4637–4368). Firstly, an “open access by-design” approach to store publications. Secondly, more transparent decision-making regarding peer-reviewing practices. The system proposes the storage of metadata of the publication process, such as who the reviewers are and the changes between the different revisions, into a decentralized ledger. In this way, such interactions are time-stamped, tamper-proof and subject to communitarian monitoring. Thirdly, the system proposes an open reputation network of reviewers supported by blockchain, which would reward positive behavior and reduce and expose unfair or biased reviews.

Therefore, large online communities can also use blockchain to automate certain rules and enable the monitoring of communitarian behavior transparently. In fact, existing large communities such as Wikipedia already make extensive use of transparent records to monitor user interactions, and automate a large part of the monitoring using bots, programmed with specific responsive automatic actions. Thus, blockchain may be useful to enhance this transparency, improve CBPP community monitoring, and its automation.

Graduated Sanctions

This principle states that participants not only actively monitor but also sanction one another when behavior is found to conflict with community rules. These sanctions against participants who violate the rules should be aligned with the perceived severity of the infraction. As with the case of monitoring, Stern (2011) argues that this principle is also essential for global commons, although it is more difficult to implement because the participants are more loosely connected. For example, the parties in conflict are likely to live in different countries with largely different cultural settings. How to define and execute sanctions in such contexts becomes a significant challenge.

The affordances of self-enforcement (II) and autonomous automatization (III) for blockchain-based governance for large CBPP communities managing digital commons offer, in this respect, several avenues of exploration. Smart contracts can be employed by these communities to automatically self-enforce the rules that regulate the graduated sanctions agreed in the community. Furthermore, this capacity for self-enforcement could be even more intense when considering DAOs. DAOs can take the initiative when certain events happen, and react autonomously upon circumstances or user actions. In other words, they increase the degree of impersonalization with regards to the application of the sanctions agreed by the community. The effects are unknown and could vary: from preventing the usual effect of reacting against the enforcer or “killing the messenger,” to the triggering of frustration and impotence as has been the case with previous reactions against machines (Postman, 1993).

In this respect, we can find existing examples in which blockchain software implements community sanctions. For instance, Kleros is a blockchain project providing blockchain-supported courts. In these courts, a jury formed by community members would mediate community conflict resolutions, delivering blockchain-supported verdicts. Furthermore, projects implementing these blockchain courts such as Aragon Court, have specific rules to sanction misbehaving members of the jury, since the community can start a vote to remove their power in the jury. Thus, large online communities can both encode sanctions in their smart contracts (e.g., losing a privilege if the community agrees so) and use blockchain courts to sanction behaviors against the community rules.


Conflict Resolution Mechanisms

This principle specifies that members of the community should have easy access to spaces in which to resolve conflicts. As in the case of the principle regarding the graduated sanctions, the difficulties identified by Stern (2011) for global commons are derived from the challenges posed by these communities being more loosely connected than those studied by Ostrom.

In this respect, the affordances of increasing transparency (V) and autonomous automatization (III) might be valuable for the design of blockchain-based tools which facilitate the scaling up of conflict resolution mechanisms in these large communities. On the one hand, transparency is commonly employed by large CBPP communities as part of their conflict resolution mechanisms. One can think, for example, of the enormous amount of content which can be found in the discussion pages of Wikipedia; or in the issue lists of FLOSS communities. These large amounts of data are not usually solely related to the digital commons maintained, but also to the organizational processes which surround them. Such transparency facilitates access, participation and visibility of conflict resolution processes.

On the other hand, the employment of the aforementioned DAOs could lead to spaces in which conflicts are made explicit, between members of a DAO, across DAOs, and between DAOs and humans. This encourages communities to establish more explicit mechanisms for conflict resolution, which may be at least partially tackled by automated processes. In fact, Aragon is already working on creating digital jurisdictions for conflict resolution within, and across, DAOs.

As previously introduced in the graduated sanctions section, some blockchain projects are developing blockchain-supported courts and other arbitration mechanisms (Metzger, 2019). In the case of Aragon Court, there is a hierarchy of courts for conflict resolution. Primary courts are “low cost” (since they imply a small cost in cryptocurrency), although the system enables appeals to higher and more expensive courts if a party is not satisfied with the verdict. However, despite these developments, these courts are far from replacing standard courts of laws, nor do they tackle major conflicts. In fact, we often see the resolution of conflicts in blockchain projects themselves being discussed and resolved in more traditional online platforms, such as social networks, forums and blogs. At times, these conflicts have also been escalated to traditional state courts. For instance, in the ecosystem of Aragon, a conflict over funding allocation and contractual obligations between the Aragon Association and the company Autark ended up in the Swiss court12.

The blockchain-supported courts and similar conflict resolution mechanisms could lower the cost to solve conflicts within global communities, and provide transparency to the conflict resolution processes. Moreover, the sole discussion and definition of a legitimate conflict resolution mechanism in an online community can reduce the effects of the so called “Tyranny of Structurelessness” (Freeman, 2013), in which power dynamics are strengthened when no formal structure is provided. Thus, blockchain can offer additional conflict resolution mechanisms to the tools already in use by global communities managing digital commons." (https://www.frontiersin.org/articles/10.3389/fbloc.2021.577680/full)