Directory of Personal Fabrication Courses at U.S. Universities

From P2P Foundation
Jump to navigation Jump to search

Source: [email protected],

"In the U.S., pioneering STEM educators in high schools, technical colleges and universities have integrated personal fabrication technologies into their science and engineering curriculums." (

Leading examples include:

Stanford University

professor Paulo Blikstein teaches a hands-on course to prepare education students to integrate personal fabrication technologies into their future classrooms. Students use prototyping machines (such as laser cutters and 3D printers) to design and create toys, games and other learning tools (“artifacts”) for children. Stanford students graduate from Blikstein’s class knowing how to use computers and personal fabrication technologies to design and create classroom learning kits and educational tools.

MIT's How to make (almost) anything

Students in a course called “How to make (almost) anything” apply personal fabrication technologies to solve real world problems. Taught by a leader in the field of personal fabrication, Neal Gershenfeld, students in the class range from engineers to artists to art historians. Over the course of a semester, students learn to use CAD software, work with a circuit board, and use a number of personal fabrication machines. The final semester project is each students’ designed and fabricated solution to a real world problem.

Cornell University

At Cornell, the [email protected] project is both the name of a 3D printer model, as well as an ongoing initiative aimed at STEM educators. Developed by Professor Hod Lipson and postdoctoral student Evan Malone, the [email protected] 3D printer offers open-sourced design blueprints for the printer, so anybody who is interested can download the design files, make their own [email protected], or improve upon its existing design. [email protected] works with a number of kid-friendly materials, including Play-Doh, cookie dough, and chocolate, as well as polymers and metals.

Technical development and support for [email protected] is provided by students and open source volunteers. A second major STEM initiative under the [email protected] umbrella is, a web site exchange of no-cost 3D electronic blueprints for educational tools and classroom models intended for use in K-12 STEM education. K- 12 students upload electronic blueprints onto the site for objects such as printable models of the molecular structure of a particular element, or the physical manifestation of a mathematical equation. Other students browse and download the collection of designs and print their selected object on their local [email protected] 3D printer. A growing collection of online electronic blueprints for a wide range of 3D printable items are available at

Lorain County Community College (LCCC)

LCCC is a leading personal manufacturing educator. Their Fab Lab is open to students and the general public. Students can take a one-credit course on Introduction to Personal Fabrication or can enroll in a non-credit workshop. The Fab Lab has personal-scale vinyl cutter, table-top milling machine and a laser cutter that can engrave text, graphics, and photographs onto a wide variety of materials (wood, acrylic, marble, mat board, leather, glass, and more)." (

University of Washington

The University of Washington’s Open3DP (Open 3D Printing) project is a website hosted by the Solheim Rapid Prototyping Laboratory in the Mechanical Engineering Department. Its purpose is to disseminate information and foster a community of people interested in an open sharing of 3D printing information. The Solheim Lab is directed by Mark Ganter and Duane Storti.

More Information