How Fab Labs Address Environmental Issues

From P2P Foundation
Jump to navigation Jump to search

* PhD Thesis: Making Sustainability. How Fab Labs Address Environmental Issues. Cindy Kohtala. 2016

URL = https://shop.aalto.fi/p/872-making-sustainability/

Description

"Citizens are increasingly involved in the design and production of their own products. Forerunner groups are exploring new ways of doing things with digital fabrication tools, a phenomenon known as the maker movement. Especially communities who work together in dedicated spaces, makerspaces, are rapidly proliferating. They are of research interest, as they are now experimenting with new practices and organizations that indicate the possible impacts of a digitalizing society. They carry potential to do away with the negative environmental impacts associated with mass production and consumption (and decouple them from socio-economic prosperity), but there may also be new, unforeseen environmental consequences of such prosumption.

This dissertation reviews the environmental issues in the maker movement, and it examines how environmental sustainability is taken up in Fab Labs (fabrication laboratories) or remains invisible and unaddressed, based on longitudinal analysis. The thesis sheds light on our possible futures, as these niche activities move towards the mainstream. It clearly demonstrates how communities attempt to enact ideology: how we shape technologies and technologies shape us."


Abstract

"Digital manufacturing technologies are proliferating and can enable socially significant, innovative new forms of production and consumption. This thesis examines the environmental sustainability issues in peer production and how they are addressed in Fab Labs (fabrication laboratories): shared spaces where users can design and make their own artefacts outside of conventional mass production channels, using, for example, laser cutters, 3D printers and electronics stations. Fab Labs are open to members of the general public, who learn to use the equipment themselves and are encouraged (or required) to document and openly share their projects. ‘Making’ in Fab Labs and the ‘maker movement’ are often endorsed by proponents as a better alternative to mass consumption and consumerism, whether through enhancing skills to build and repair, answering one’s own needs as opposed to ‘satisficing’ through passive consumption, or distributing production within local networks as opposed to long, transport-intensive and large-volume supply chains. However, Fab Labs and makerspaces are contexts rife with paradox and complexity concerning appropriate use of materials and energy. Little empirical research on material peer production currently exists, and the environmental impacts, and benefits, of digital fabrication are largely unknown.

Primarily through ethnographic research methods and Symbolic Interactionist analysis, the thesis examines daily practices and discourses in selected Fab Labs and how sustainability is represented in these communities. The findings articulate how the actors’ interactions, expressed intents and contextual conditions serve to shape the Fab Lab. The key finding is the conflict actors encounter between – on the one hand – setting ambitions, promoting particular ideologies and espousing sustainability-oriented values, and – on the other hand – realizing and enacting these values in the mundane and constraining routines of everyday practice. Even actors with a clear ecological mandate struggle to engage with emerging sustainability issues in a rapidly changing sociotechnical environment. Present topics of concern and everyday tasks overshadow future strategy and vision work as well as engagement with environmental issues and rapid technology developments. However, actors who consciously and visibly strive to enact the espoused Fab Lab ideology, i.e. offering access to empowering, distributed technologies that enable people to meet their own local needs by design, appear better able to identify and tackle the environmental sustainability issues as they arise. Environmental issues are also intertwined with and embedded in other ideological concerns, but they are rarely promoted in their own right.

The thesis also details the current landscape of research literature on distributed production, who is studying these environmental issues and how, and the potential opportunities and threats in this new mode of production.

?The thesis thereby contributes to research on peer production communities, social shaping of technology and sustainable design. Knowledge of current maker practices and their sustainability implications have value for the peer communities studied, but also potentially technology developers and policy makers. As Fab Labs are experimental spaces for new digital manufacturing capabilities and activities, the wider implications of the findings may indicate how increasing digitalization and citizen involvement in production will transform design and production – and the sustainability implications therein." (https://shop.aalto.fi/media/attachments/f8dd3/Kohtala.pdf)


Excerpts

From the introduction:

"Increasing numbers of citizens have access to digital fabrication equipment via devoted spaces known as Fab Labs, makerspaces and hackerspaces, which are mushrooming globally. Such access enables people to design and make their own products outside of conventional mass production and consumption channels, using technologies such as desktop additive manufacturing equipment (that is, ‘3D printers’), CNC (computer numeric control) milling machines, laser cutters, vinyl cutters and electronics stations for circuit prototyping. The technologies themselves, especially 3D printing, are widely espoused as disruptive technologies that will radically shift production and consumption patterns (Anderson, 2012; Marsh, 2012; Hamermesh, 2014).

The technologies are not new, as they have been used in industry, particularly in rapid prototyping, for decades; what is new is that costs of the equipment are rapidly decreasing, the machines are increasingly smaller and ‘desktop’, and the user base as well as use applications are expanding. Expiry of patents has especially fostered experiments in equipment design in open source development processes (de Bruijn, 2010; Jones et al., 2011), and users freely share and adapt designs and instructions for digital fabrication online (Kuznetsov and Paulos, 2010). Fab Labs, makerspaces and hackerspaces provide teaching and workshops to learn digital fabrication, but they also largely expect their users to use the equipment independently; this encourages peer learning and knowledge sharing. For explicit reasons such as ‘empowerment’, education and learning, and ‘democratization’ of production and technologies, Fab Labs are also expected to allow the general public access to their Labs at least part of the time, a mandate differentiating them from other makerspaces (Gershenfeld, 2005; 2012; Walter-Herrmann and Büching, 2013a). For Fab Lab founder Neil Gershenfeld, professor at Massachusetts Institute of Technology, ‘makers’ are “high-tech do-ityourselfers who are democratizing access to the modern means to make things” (Gershenfeld, 2012, 48).

Disruptive technologies combined with new practices and values aligned with empowerment and peer learning means the Fab Lab model could well be a stepping stone to something new and different: more widespread implementations of distributed production, as an alternative to mass production. Many actors in the Fab Lab network and the ‘maker movement’ espouse personal fabrication as a clearly better alternative to mass consumption and consumerism. In Fab Labs the capacity to answer one’s own needs locally, individually and as communities, is emphasized as a benefit (Gershenfeld, 2005), as opposed to being reliant on large corporate technology providers or ‘satisficing’ through passive consumption.1 Other espoused benefits are the enhanced skills people acquire to build, disassemble and repair (Mellis and Buechley, 2014). These propositions have clear environmental implications, from lessened environmental impact resulting from production only according to need, to more eco-efficient use of materials and products combatting planned obsolescence, to reduced negative impacts from transport emissions. However, little empirical research exists to confirm whether these benefits are coming to fruition or even on what actually happens in these forerunner makerspaces. Rifkin (2014), perhaps more than most commentators on Fab Labs or the maker movement, explicitly connects ‘making’ with environmental sustainability benefits: “The [Maker] Movement has been driven by four principles: the open-source sharing of new inventions, the promotion of a collaborative learning culture, a belief in community self-sufficiency, and a commitment to sustainable production practices” (Rifkin, 2014, n.p.).

Rifkin’s (2014) vision is of a more sustainable future world, where research and development (R&D) is distributed and democratized in Fab Labs and manufacturing is dispersed locally – powered by renewable energy, reducing transport emissions and eliminating the embodied energy in unneeded mass production intermediaries. Although stated as ‘fact’, Rifkin’s four principles (which would help precipitate such a vision) remain propositions and assumptions. The maker movement itself as a community of communities is fragmented and does not necessarily sing with the same voice on matters of self-sufficiency and sustainable production. Moreover, reporting on the environmental sustainability of 3D printing, personal manufacturing or the maker movement in non-academic media has tended to be taken on by enthusiasts and parties with vested interests. As research on makers, makerspaces and making is only now emerging, our understanding of everyday practices in makerspaces is also fragmented and largely reliant on groups’ and individuals’ own narratives. Rhetoric such as Rifkin’s (and numerous other authors’) may guide action as ideology and manifesto, but only direct observation of these activities and groups can reveal if makers’ actions truly reflect these “beliefs” and “commitments” – or otherwise.

Identifying when and how makers enact ideology, and when not, can help articulate opportunities for more responsible practices in makerspaces. As Fab Labs are experimental spaces for new digital manufacturing capabilities and activities, and makers the actors practicing a possible future already now, there is much that can be learned about the potential coming impacts of ever-increasing digitalization in society and more citizen involvement in production. Fab Labs and makerspaces are especially spaces where new practices around open design and open innovation meet new uses of materials (and new materials) and energy-intensive production methods: where the espoused equipotentiality (Bauwens, 2005) of citizens globally for creative making and invention may or may not meet equitable global access to and use of energy and natural resources. There is clear potential for participants in the maker movement, such as Fab Lab users and organizers, to bypass the negative ecological impacts of mass production and consumption in their collaborative endeavours, but it is not self-evident that the actors even acknowledge or actively pursue this potential in their quest to change the present: change production, education and even the economy (Walter-Herrmann and Büching, 2013b). It can therefore be put forward that the sustainability analysis of these practices is best done sooner than later.

?Among the citizen communities experimenting with digital fabrication, Fab Labs are a distinct entity and provide a distinguishable identity with which actors readily and eagerly associate. As will be explained further in the next chapter, the Fab Lab network is the most organized of maker communities: having clear communication facilities and channels networking the Labs; an abstract but widely promoted protocol for action; platforms for individual mobility, training and support across Labs; and regularly scheduled meetings for face-to-face interaction. Fab Labs therefore provide an excellent opportunity for examining peers making things together: organic enough that Labs differ widely from each other, while structured enough to enable observations of what commitments appear to maintain over time and across distance. Most importantly, such observations lend themselves to a better understanding of these novel spaces than mere identification of environmental issues in digital fabrication alone.

The opportunities and hindrances to adoption of sustainability-oriented values and actions by these communities can be identified and understood as rooted in the community’s local and geographic conditions, chronology and history, and interaction among actors: a more profound understanding involving time and change than can be delivered by quantitative evaluations (such as Life Cycle Assessments). This methodological advantage has also recently been acknowledged by other researchers, such as Hielscher and Smith (2014).

Given this background and the challenges outlined above, and highlighting the potential of Fab Labs to contribute to new production and consumption patterns in future, the key question is how (or if ) these actors can co-create a more sustainable (i.e. environmentally, socially and economically sustainable) paradigm through collaborative, explorative activities based in Fab Labs today. In this doctoral research, this question is mainly examined through the lens of what actors actually do to both establish and use the Lab to fulfil their objectives: to articulate what current activities in Fab Labs tell us about the barriers and drivers to recognizing and prioritizing sustainability issues. The research questions for the dissertation are as follows.

How do actors in the social world of a Fab Lab address environmental sustainability, in their future-oriented vision and strategy work and in their everyday operations? What are the environmental (often socio-environmental) issues in the maker movement and distributed production, and how are they discussed and tackled in Fab Labs?

The research methodology draws from approaches in Science and Technology Studies (STS), particularly Symbolic Interactionism and the social shaping of technology perspectives, and is informed by Design Research and the field of Design-for-Sustainability. Ontologically the research therefore takes a constructivist, interpretivist position. The methodology, methods and the researcher’s standpoint are discussed in chapter 3.

In geographic scope, the research has focused mainly on the global North, particularly northern European Fab Labs. In scale, the dissertation particularly examines the ‘middle range’ of material peer production that is currently little studied: the actions and interactions of active practitioners and Lab organizers and the relationship between what they espouse and what they do. At this scale, as individuals form communities and social worlds, structural concerns such as existing institutional conditions meet actor- and material-related aspects, such as developing and learning new practices with technologies. As a unit (or units) of observation, this research target falls between the micro-level focus of individual Lab users’ making actions (what they make, what motivates them, the role of ‘creativity’ and so on), a focus that receives more research attention, and higher-level observations of larger ecosystems (Fab Labs as innovation platforms, as alternative educational and socio-cultural spaces for neighbourhoods and municipalities, and so on). This larger body of research will be discussed further in chapter 2, and the scope of the research topic is discussed in more detail in section 2.2 and illustrated in Figure 4.

The audience that may benefit from the dissertation findings thus comprises researchers and practitioners from the fields of design and sustainable design, peer production, digital fabrication, user innovation, Sustainable Production and Consumption (SCP), futures studies and Science and Technology Studies. Also importantly, the findings and implications should help guide actors in Fab Labs to reflect on their future options and directions.

The next chapter will discuss the context and background of the dissertation topic and chapter 3 the theoretical positioning and methodology. Chapter 4 presents the summary of the research papers. Chapter 5 will synthesize and articulate the key findings and chapter 6 present their implications and final conclusions, followed by the original papers. "?


ENVIRONMENTAL ISSUES, DISCOURSE AND FRAMINGS

Cindy Kohtala:

"?As an entity encompassing a place, people and practices, Fab Labs court paradox and complexity regarding appropriate use of materials and energy.

The research focus in this dissertation is therefore first and foremost on environmental sustainability, which does not intend to disconnect it from the intertwined social and economic sustainability questions. Rather, as much attention is already directed to the socio-economic dimensions of distributed production (or “prosumption”: Toffler, 1980; Ritzer and Jurgenson, 2010), foregrounding environmental sustainability serves to amplify if or where the gaps exist between what is espoused and what is practiced. (This is also a methodological question that will be discussed further in chapter 3.)

Beyond the literature review of paper 1, which examined research on distributed production and environmental impacts, several recent studies carry practical implications for current Fab Lab practices. Somewhat surprisingly, some researchers appear to be targeting the small-scale personal fabrication audience, in contrast to the industrial additive manufacturing arenas largely present in the empirical studies summarized in paper 1. A life cycle assessment exercise, for example, explicitly made fabrication spaces its target audience: it was carried out so “prototypers and job shop owners can make an informed decision about which technology to purchase or use, and so the makers of 3D printers can understand their priorities for improving environmental impacts” (Faludi et al., 2015, 15). Faludi et al. (2015) concluded that prototyping with desktop 3D printers (rather than CNC milling machines) may be less environmental impactful than first thought, but this is dependent on high utilization of the printer. This conclusion appears rarely exploited by Fab Labs: by being shared, open, peer-learning spaces, they boost the potential for eco-efficient use of shared equipment. They may also remove health, safety and emission problems away from the home or office, given appropriate health, safety and waste management measures are adopted in the Lab. Stephens et al. (2013) examined ultrafine particle emissions from desktop 3D printers and recommended caution in use in ? inadequately ventilated spaces. (Ventilation, filters and careful procedures are more clearly observed with the use of laser cutters and milling machines in makerspaces than 3D printers.) This was also the conclusion in Short et al. (2015) (who examined more 3D printing technologies than Stephens et al., 2013, and not only in the context of personal, desktop machines); the authors expressed concern that environmental impacts (and health and safety issues) of many materials used in additive manufacturing remain unknown, including when they begin to degrade. These hazardous issues, connected to process waste, support materials, resins, finished products and so on, impact not only people in the fabrication space, but also people downstream in the waste cycle as well as natural ecosystems at final disposal. This issue will become even more prominent as other types of 3D printers are developed based on expiring patents. (Desktop 3D printers have up until recently been solely FDM, fused deposition modelling, printers; low-cost, desktop SLA, stereolithography, printers are now entering the market whose materials and processes are less certain to be benign.) ? Hunt et al. (2015) identified the challenge of recycling the polymers used in personal 3D printers, and to that end developed a model for recycling codes that could be deployed in the United States as well as the design scripts that could print the codes into the products. The same research group (Michigan Tech Open Sustainability Technology) also examined the life cycle benefits of distributed recycling: a scenario where home users and prosumers would perform their own recycling processes from postconsumer goods for their own future 3D printing processes (Krieger et al., 2014). These studies are rather unusual in that they project for a scenario where small-scale, distributed, open manufacturing exists and then conduct studies to pre-empt the barriers to the environmental sustainability of such a system. A similar strategy can be seen in Kostakis et al. (2013), who explored the viability of a new social production mode oriented to sustainability, desktop manufacturing and commons-based peer production, via a case study of an open source wind turbine design.

Fox (2014) also discusses these barriers by examining the opportunities and limits “mobile production” (as opposed to “fixed production”) and “Third Wave DIY” face in terms of production, innovation and entrepreneurship. Environmental benefits include less use of raw materials and energy when compared to fixed production, but Third Wave DIY requires access to industrial infrastructure: “reliable electricity supplies, plentiful water resources, and comprehensive transportation systems” as well as language and computer skills (Fox, 2014, 26). Moreover, Fox highlights the low revenues in this mode of production (and relatively high set-up and storage costs), which necessitate subsidies. These conditions help explain why – despite rhetoric – Fab Labs have less take-up in Africa, for instance, especially outside of universities, and how the circulation of Fab Labbers educated in Europe and North America have spurred the growth of Fab Labs and makerspaces in South America, as reported in Sperling et al.’s (2015) study. This is a fruitful area of future research: how these global influences and Labber migrations come together with how Fab Labs address local specificities and regional socio-environmental concerns (Sperling et al., 2015; see also Smith, 2014).

At the Factory 2.0 scale (Figure 4), Hermann et al. (2014) proposed a model of future factories that would better accord with all three dimensions of sustainability, environmental, social and economic. In their prescriptive model, Fab Labs have a role within the factory supporting prototyping and personal fabrication, employee learning and regional support. Basmer et al. (2015) presented a conception of Open Production involving distributed production via micro-factories, including peer production, that, for these authors, represents more opportunities for social sustainability than the present. These studies complement other lines of inquiry now emerging that discuss the role of Fab Lab in sustainable cities (Diez, 2012; 2014; Guallart, 2014; March and Ribera-Fumaz, 2014). This compelling arena of research will not be summarized here but will be pursued in future studies.

These recent studies therefore appear to be taking a new direction, acknowledging a future where manufacturing is distributed and small scale and peer production has a clear role. They may be placed in the constructs of ‘bespoke fabrication’ and ‘mass fabrication’, little addressed as yet, as depicted in Figure 5 below (which appeared as Figure 4 in paper 1). They may also represent small steps to a better understanding of the under-addressed areas of research in Figure 6 below (which appeared as Figure 1 in paper 2). Nevertheless, particularly when considering the opportunities and threats of a new distributed production paradigm, as represented on the right side of Figure 6, significant challenges remain in deciding how to best study them. Part of the challenge lies in dealing with complexity and large system boundaries if one is comparing mass production to distributed production.

A related challenge is the quantification of socio-environmental aspects that are less amenable to measurement, as Gebler et al. (2014) attempt to do. Hielscher and Smith (2014, 44) thus point out the limits to methods such as LCA (life cycle assessment) studies and argue that, “[g]enerating insights into the contending narratives influential in digital fabrication developments... might be a more fruitful line of inquiry. Studying the cultures of production and consumption cultivated in workshops and other sites of take up seem to be key, and therefore how technologies are valued and used”.

In recent literature (the small body of research that it is), there have been several ways adopted for the study of makers and maker communities and evaluation of their importance and implications. As introduced in section 2.2, the notion of the commons, as central to commons-based peer production (Benkler, 2006), is increasingly used (Troxler, 2013). In examining makerspaces in Mälmö, Sweden, Seravalli (2014a; 2014b) employed direct observations and active engagement in the communities to both articulate the dynamics of the communities and determine how design can best support such activities, analysis supported by employing a commons frame (Ostrom, 1990; Hess and Ostrom, 2007). There are different understandings of the “commons” that need to be articulated in such analyses. According to Seravalli (2014a), the original conception was that of natural resources as common-pool resources, whose use and access must be managed collectively (Ostrom, 1990; Hess and Ostrom, 2007; as discussed in Seravalli, 2014a, 60-61). Secondly arose concern with the “new commons”, “open commons” and perceived “public domain” where knowledge, information, culture and innovation should reside (Lessig, 2002; Hess, 2008; Benkler, 2013; as discussed in Seravalli, 2014a, 62-63). The third conception of the commons is that of a new social and economic system, a collective institution(s) that would manage both types of commons as an alternative to capitalism (Bollier and Helfrich, 2012; Seravalli, 2014a, 64-65). Given the recent popularity of commons framing in analysing maker communities, there appears some danger that, if attempted with any less of the sensitivity and sustained effort shown by Seravalli, it too adopts the characteristics of ideology: aggrandizing of strengths and oblivious to weaknesses, and/or dominated by concerns with the “new commons” and masking the seemingly more distal problems of the natural resource commons (as Flichy and Turner found, as discussed in the previous section).

The notion of “publics” has also been employed in the analysis of material peer production communities, such as Corbett (2012) examining Access Space in Sheffield according to Habermas’s (1989) concept of public sphere and Fraser’s (1992) counterpublics. Several researchers (and researcherpractitioners, particularly in the HCI arena), are turning to Dewey’s ([1927] 2012) notion of “a public”, a group of citizens who form specifically to address a problem previously seen as out of their control (DiSalvo, 2009; DiSalvo et al., 2014). The intent of this work is to focus attention on these problematic issues and how to enhance democratic processes in doing so; objects and materials (such as technologies) play a particular role in these studies. One line of enquiry particularly centres on critical discussion via making activities: generating critical understanding of technologies (for publics and scholars alike) by tangibly making them, either as designers alone (for, for example, exhibitions or provocative happenings) or with the publics in question (DiSalvo et al., 2014). Many have adopted Ratto’s (2011) term of Critical Making for these endeavours, as discussed in paper 4 (Ratto et al., 2014; Ratto and Boler, 2014). While environmental sustainability may or may not come to the forefront of the problems regarded significant in these publics-oriented explorations (or in studies framed as commons-based analyses), Marres (2012) has examined the role of materials specifically with regard to environmental sustainability: how publics coalesce around environmental topics in everyday practices and how the materials or devices in question mediate participation.

An explicitly environmentally oriented framing of personal fabrication is that of Appropriate Technologies (Schumacher, 1973; UNEP, 1978, 44), as employed by, for instance, Turner (2010) and Pearce et al. (2010). As befitting the common definition of Appropriate Technology, both studies are centred on “development” and digital fabrication tools as empowering communities in the global South. There appears to be an opportunity to begin to define what and how digital fabrication tools are “appropriate” technologies in specific contexts in the global North, especially given the positioning of personal fabrication tools as low overhead and resource efficient (Carson, 2010) and that the phrase is employed in the Fab Lab community (Mandavilli, 2006; “Principal Voices: Neil Gershenfeld”, 2008).

Smith and colleagues’ choice of term “grassroots innovation” (Smith et al., 2013; 2014; Hielscher et al., 2015) serves as a catch-all that can also include the material peer production communities in the global North. Recent focus on Fab Labs and makerspaces regards them as “community-based digital fabrication workshops” and “grassroots digital fabrication”: as the (potential) setting for environmentally and socially conscious, appropriate technology development (Hielscher and Smith, 2014; Smith et al., 2015; Charter and Keiller, 2014).

Recent developments in Europe have seen other researchers and nonprofit organizations attempting to explore and articulate Fab Labs’ and makerspaces’ potential role in a more socio-environmentally benign economic system, to exploit the immense pool of valued, specific knowledge and competence in Fab Labs on fabrication processes, electronics, components and materials. Current topics include remanufacturing and distributed manufacturing (the Future Makespaces project16) and closing material loops in a circular economy framework (The Ellen MacArthur Foundation;17 the RSA’s [The Royal Society for the Encouragement of the Arts] Great Recovery;18 and the independent, self-organized Open Source Circular Economy Days19). These organizations’ events in very recent years have seen enthusiastic Fab Lab participation and contribution.

This chapter has described Fab Labs and the current understanding of the maker movement. It has summarized relevant studies and trends in research on making and demonstrated how the environmental discourse has travelled both through the maker community and the research community studying material peer production.20 Much research focuses on education and the social benefits of Fab Labs, and in parallel much discourse in Fab Labs touches on environmental issues only obliquely. This may be because environmental concerns appear too distant to be of concern in a small, “thirdspace” world of its own and/or Labs may feel underequipped to discuss environmental issues (as might researchers feel underequipped to study this fast-moving phenomenon). The current doctoral research puts forward that a better understanding of the activities and interactions in these forerunner fabrication spaces will help better identify both the socio-environmental issues of prominent concern and how to best tackle them."