Importance of Distributed Digital Production

From P2P Foundation
Jump to navigation Jump to search
  • Article: Lawrence J. Rhoades, The Transformation of Manufacturing in the 21st Century, in: The Bridge 35, 1/2005, S. 13-20.



"Distributed digital production, a category of processes evolving from Rapid Prototyping, Rapid Manufacturing, free-form fabrication, and layered manufacturing, is a harbinger of twenty-first-century production, which is dramatically different from the kind of “manufacturing” we know today. The fundamental nature of distributed-digital processes—the construction of functional metal work pieces by assembling elemental particles, layer by layer, with no instructions other than the computer design files widely used to define objects geometrically—is based on different assumptions than those that drove manufacturing and distribution strategies throughout the twentieth century.

As the costs and wait times of tooling, programming, and “designing for manufacturing” are reduced and then eliminated, the perceived advantages of high-production volumes, concentrated manufacturing sites, and complex distribution logistics will yield to the advantages of distributed digital production—products designed to meet the specific preferences of individual customers that can be produced on or near the point of consumption at the time of consumption (e.g., automotive spare parts produced at a dealership).

The design freedom enabled by constructing objects in thin layers from particles with dimensions in microns will significantly reduce a product’s component-parts count. This, in turn, will reduce product weight by eliminating attachment features and fasteners and optimize functionality by eliminating excess material and wasted energy. The particles that are not needed for the part produced can be recycled to become the next—maybe very different—part. The metal in older, no longer useful products can be locally recycled to become metal powder feedstock for tomorrow’s production. Thus, inventory carrying costs and risks and transportation costs can be dramatically reduced, increasing savings in energy, materials, and labor. Finally, because these processes are highly automated, the size of the workforce required to produce and deliver manufactured products to the customer will be greatly reduced. Consequently, low-cost, so-called touch labor will lose its competitive advantage in the production of physical objects.

The demand for innovative product designs will expand dramatically. And, because ideas will be delivered electronically, designers can be located anywhere. As design for manufacturing becomes less important, and because design superiority will be gained principally through understanding and responding to customers’ tastes, designers might want to be located near their customers.

Even if products are designed remotely, however, production will be done locally. Physical objects will be produced “at home” or “in the neighborhood” from locally recycled materials. Thus, cities will lose their economic advantage, and urban populations will be dispersed." (