Darwinian Adaptive Evolution vs. Generative Sudden Evolution

From P2P Foundation
Jump to navigation Jump to search


Corpus Noeticum:

“John H. Campbell writes (as cited by Nick Land):

- Biologists suspect that new forms evolve rapidly from very tiny outgroups of individuals (perhaps even a single fertilized female, Mayr, 1942) at the fringe of an existing species. There the stress of an all but uninhabitable environment, forced inbreeding among isolated family members, "introgression" of foreign genes from neighboring species, lack of other members of the species to compete against or whatever, promotes a major reorganization of the genomic program, possibly from modest change in gene structure. Nearly all of these transmogrified fragments of species die out, but an occasional one is fortunate enough to fit a new viable niche. It prospers and expands into a new species. Its conversion into a statistically constrained gene pool then stabilizes the species from further evolutionary change. Established species are far more notable for their stasis than change. Even throwing off a new daughter species does not seem to change an existing species. No one denies that species can gradually transform and do so to various extents, but this so-called "anagenesis" is relatively unimportant compared to geologically-sudden major saltation in the generation of novelty.

Three implications are important.

1. Most evolutionary change is associated with the origin of new species.

2. Several modes of evolution may operate simultaneously. In this case the most effective dominates the process.

3. Tiny minorities of individuals do most of the evolving instead of the species as a whole.

A second important characteristic of evolution is self-reference (Campbell, 1982). The Cartesian cartoon of an autonomous external "environment" dictating the form of a species like a cookie cutter cutting stencils from sheets of dough is dead, dead wrong. The species molds its environment as profoundly as the environment "evolves" the species. In particular, the organisms cause the limiting conditions of the environment over which they compete. Therefore the genes play two roles in evolution. They are the targets of natural selection and they also ultimately induce and determine the selection pressures that act upon them. This circular causality overwhelms the mechanical character of evolution. Evolution is dominated by feedback of the evolved activities of organisms on their evolution.

The third seminal realization is that evolution extends past the change in organisms as products of evolution to change in the process itself. Evolution evolves (Jantsch, 1976; Balsh, 1989; Dawkins, 1989; Campbell, 1993). Evolutionists know this fact but have never accorded the fact the importance that it deserves because it is incommensurate with Darwinism. Darwinists, and especially modern neodarwinists, equate evolution to the operation of a simple logical principle, one that is prior to biology: Evolution is merely the Darwinian principle of natural selection in action, and this is what the science of evolution is about. Since principles cannot change with time or circumstances, evolution must be fundamentally static.

Of course, biological evolution is not like this at all. It is an actual complex process, not a principle. The way that it takes place can, and indisputably does, change with time. This is of utmost importance because the process of evolution advances as it proceeds (Campbell, 1986). Preliving matter in the earth's primordial soup was able to evolve only by subdarwinian "chemical" mechanisms. Once these puny processes created gene molecules with information for their self-replication then evolution was able to engage natural selection. Evolution then wrapped the self-replicating genomes within self-replicating organisms to control the way that life would respond to the winds of selection from the environment. Later, by creating multicellular organisms, evolution gained access to morphological change as an alternative to slower and less versatile biochemical evolution. Changes in the instructions in developmental programs replaced changes in enzyme catalysts. Nervous systems opened the way for still faster and more potent behavioral, social and cultural evolution. Finally, these higher modes produced the prerequisite organization for rational, purposeful evolution, guided and propelled by goal-directed minds. Each of these steps represented a new emergent level of evolutionary capability.

Thus, there are two distinct, but interwoven, evolutionary processes. I call them "adaptive evolution" and "generative evolution." The former is familiar Darwinian modification of organisms to enhance their survival and reproductive success. Generative evolution is entirely different. It is the change in a process instead of structure. Moreover, that process is ontological. Evolution literally means "to unfold" and what is unfolding is the capacity to evolve. Higher animals have become increasingly adept at evolving. In contrast, they are not the least bit fitter than their ancestors or the lowest form of microbe. Every species today has had exactly the same track record of survival; on average, every higher organism alive today still will leave only two offspring, as was the case a hundred million years ago, and modern species are as likely to go extinct as were those in the past. Species cannot become fitter and fitter because reproductive success is not a cumulative parameter.”