Major Transitions in Big History

From P2P Foundation
Revision as of 07:09, 8 May 2023 by unknown (talk)
Jump to navigation Jump to search
  • Article: Major transitions in ‘big’ history. Robert Aunger. Technological Forecasting & Social Changed, 2007

URL = https://www.academia.edu/3007922/Major_transitions_in_big_history

Description

1.

"‘Big’ history treats events between the Big Bang and contemporary technological life on Earth as a single narrative, suggesting that cosmological, biological and social processes can be treated similarly. An obvious trend in big history is the development of increasingly complex systems. This implies that the degree to which historical systems have deviated from thermodynamic equilibrium has increased over time. Recent theory suggests that step-wise changes in the work accomplished by a system can be explained using steady-state non-equilibrium thermodynamics. This paper argues that significant macro-historical events can therefore be characterized as transitions to steady states exhibiting persistently higher levels of thermodynamic disequilibrium which result inobservably novel kinds or levels of organisation. Further, non-equilibrium thermodynamics suggests that such transitions should have particular temporal structures, beginning with sustainable energy innovations which result in novelties in organisation and in control mechanisms for maintaining the new organisation against energy fluctuations. We show how events in big history which qualify as historically significant by these criteria exhibit this internal structure. Big history thus obeys law-like processes, resulting in a common pattern of major transitions between steady-state historical regimes. This common process from cosmological to contemporary times makes big history a viable and relevant field of scientific study."


2.

"The primary contention of this paper is that the evolution of complexity in macro-scale history can becharacterized in physical terms as a sequence of transitions between non-equilibrium states of a particular kind. Despite being the result of processes ranging from star formation to the diffusion of technological inventions through societies, it will be shown that every major historical transition has a number of features in common which make it legitimate to call these transitions members of the same class. In this way, macro-history is shown to exhibit significant law-like behaviour."