Multi-Evolutionism or Non-Linear Evolution Theory: Difference between revisions
unknown (talk) |
unknown (talk) No edit summary |
||
| Line 4: | Line 4: | ||
- A_Korotayev_and_D_Bondarenko et al. [https://www.academia.edu/3116553/Alternatives_of_Social_Evolution_Ed_by_N_Kradin_A_Korotayev_and_D_Bondarenko_Vladivostok_FEB_RAS_2000] | - A_Korotayev_and_D_Bondarenko et al. [https://www.academia.edu/3116553/Alternatives_of_Social_Evolution_Ed_by_N_Kradin_A_Korotayev_and_D_Bondarenko_Vladivostok_FEB_RAS_2000] | ||
=Discussion= | |||
==Critique of Universal Evollutionism== | |||
"Universal evolutionism naturally has its own limits and vulnerabilities. | |||
First, the universal evolutionism examines only one evolutionary trend (which is in certain respect the major one); meanwhile, it is necessary to pay attention to other trends and aspects as well Let us note that the similarities between objects and processes of different nature can become evident (and are often found) within the secondary trends (e.g., the similarity between social insects and the society). | |||
Second, the universal evolutionism is supported by a rather narrow theoretical base of the unity of the world. In addition to distinguishing the historical and genetic unity it is necessary to find an ontological base for the unity which would be based on common principles, laws, and rules showing the internal similarity of the existence and functioning of the matter at all phases of its development. | |||
Third, it is necessary to examine the common features disregarding the differences in nature and complexity of the objects; thus, one can formulate certain (but rather general) principles of ‘behaviour’ of the objects belonging to different evolutionary levels. | |||
Fourth, one can postulate the unity of evolution proceeding from the assumption about the general principles (which originated genetically or typologically) of the world structure. To find out the general elements of this structure, one should compare the evolutionary levels (fields) applying different criteria." | |||
==[[Similarities Between All Types of Macro-Evolution]]== | |||
Leonid E. Grinin and Andrey V. Korotayev: | |||
"One can find many similarities between all types of macroevolution. However, unfortunately, there are few works on the opportunity to reveal them. In the present Introduction we will briefly consider a number of quite important similarities but unfortunately in a rather unsystematized manner as they are presented here only as an illustration of some important aspects which in our opinion clearly show the systemic-structural and evolutionary functional unity of the world starting from the microworld up to contemporary global humankind. In fact one can distinguish several similarities and group them into large blocks. | |||
===The capacity for development, self-preservation and self-organization.=== | |||
Evolution, that is the changes of objects, actually means the destruction of their stability and identification. From this point of view, at any stage and in any sphere of evolution the matter can be divided into two types: the first one is able to self-preservation and the second one is able to self-transformation (of course, these characteristics are present to a different degree). In other words, one can speak about evolving and non-evolving matter. There exist rather conservative elements even within human society and there still exist some societies which are not quite prone to changes, especially this phenomenon was strongly pronounced in the previous epochs. An average lifespan of a biological species is less than 10 million years. At the same time there are species which have endured for 200–300 million years, and the presumable age of blue-green algae is several billions years, that is they have not changed significantly since the Archean Eon. At any phase, the evolving matter makes up the minority (see Nazaretyan 2011); thus, the light (baryonic, stellar) matter according to some current views amounts for only 3–5 per cent. And such proportion is relevant even to the human society in which, according to some reports, the number of innovators is also 3–5 per cent. But at the same time, we suppose that just in the course of evolution of this comparatively small part of the matter the latter acquired the ability to self-organization. Many scientific disciplines, including Complexity Studies and Cybernetics, deal with the processes of self-organization of the matter. Self-organization is one of the most important and universal properties of the matter at any stage of evolution. One can say that the stronger the property of the matter to evolve, the stronger is its ability to selforganization and interaction with the environment. The issue of interaction with the environment, which is typical of evolution, can be illustrated by the problem of ‘wastes’ resulting from objects’ functioning and of the best ways to get rid of the wastes. This is a cross-cutting evolutionary and more urgent problem of the present time. Fred Spier considers this aspect from a rather interesting point (Spier 2011b). Let us note once again that the inability to evolve means the ability of the matter to self-preservation; thus, the dark matter (the composition of this matter is still unknown) has probably undergone no significant changes over the last 13–14 billion years after the Big Bang, and perhaps, it had existed before this event. Though the latest discoveries confirm the consistency of the dark matter and dark energy (cosmic vacuum), one can suppose that they are capable to transformations, but it takes much more time for the dark matter to transform than for the light matter. But some time ago the stars used to be considered unchangeable too. | |||
==The law of the age stages/phases of object's life.== | |||
Oswald Spengler (1993) and Arnold Toynbee (1991) are known for their theories of civilization which stated that every civilization passes through certain stages of life (birth, youth, maturity, and decline) before the collapse. The similar idea was suggested more categorically by Lev Gumilev, who stated that the life period of any ethnic group from its birth till death lasts for 1500 years and during its life time an ethnos passes through the same stages (see Gumilev 1993). This idea still arouses discussions; but still the idea of certain phases of social organisms' life is rather reasonable. But while in social life a society can prolong its life and retrieve its dynamism at the expense of innovations and reformations, in the case of evolution we clearly observe that all material objects and systems have a certain lifespan and pass a certain phase. It is quite obvious among the biological organisms and even species. The stars also have certain life phases. After the phase of ordinary thermonuclear reactions, which is called the main sequence phase, is completed, a star transforms into a white dwarf (after passing the red giant stage) or (having a large mass) into a neutron star. One can find certain phases within the life span of many other objects as well. | |||
==The rule of ‘block assemblage’ in evolution== | |||
This rule was formulated by Grinin, Korotayev and Markov (see Grinin, Markov, and Korotayev 2009, 2011) for the analysis of the similarities between biological and social macroevolution.6 However, it is quite relevant for the cosmic, chemical and geological phases of evolution. The essence of this rule is that in the course of evolution there emerge some elementary and more complex units, systems and constructions which are used in different variations. The elementary particles are the units which form the atoms. With the emergence of atoms there also emerge the stellar systems, and in the stellar interior new types of atoms including heavy elements are formed from additional elementary particles. Due to the diversity of emerging atoms one can speak about a chemical evolution. Atoms are the universal units and components for the formation of various molecules and this marks the beginning of geological and then of a complex molecular organic evolution leading to life. The cell becomes an element for the formation of living organisms; there progressively emerge entire blocks of organs and systems which are surprisingly similar in different classes and even types of living organisms. One can recall genes and chromosomes as standard components and blocks of biological systems. One can insert a gene of a mouse into an elephant DNA, and the human gene – into the bacteria! Thus, there is a striking standardization of elements and ‘components’ at all evolutionary levels; and since entirely new objects within evolution are for 90–99 per cent created from the already existing components, the speed of evolution increases dramatically. Let us also add that in human society the borrowing occurs rather frequently: societies adopt (sometimes as complete wholes) religions, legal, political and technological systems. As a result we observe the phenomenon of globalization in the course of which the unification reaches an unprecedented level. | |||
==The unevenness and catastrophes (gradualism and catastrophism)== | |||
Within evolution, periods of slow changes (accumulations), that is of an evolution in its narrow sense, are alternated by rapid metamorphoses and qualitative transformations (which sometimes look like revolutions) and periods of explosive growth are followed by catastrophes. In geology and paleontology there were hot debates between proponents of catastrophism (the school of the famous paleontologist George Cuvier) and adherents of gradual changes (e.g., Charles Lyell) whose approach is known as ‘gradualism’. The victory of the latter was a progress; however, later it became clear that it was very difficult to explain many things by slow and insignificant changes only. Thus, the evolutionary theory was enriched by the ideas of leaps, revolutions, and catastrophes enabling us to understand how and why the world kept changing. It is important to note that catastrophism is an essential part of evolution at all its stages. The idea of ‘Big Bang’, the biggest ‘catastrophe’ in the history of the Universe, underlies its origin. Thus, catastrophes appear to inevitably accompany the development and evolution, to be a kind of compensation for the development and rapid growth (and at certain evolutionary stages – a compensation for progress). In cosmic life, catastrophes are an inevitable result of long life of stars which, after having depleted their energy reserves, turn into the white dwarfs or red giants and sometimes they produce extremely bright outbursts of light – the outbursts of supernova. In the field of biology, the catastrophes are the great extinctions which enabled new progressive species to appear. It should be noted that the catastrophes provide an abundant data for the scientific reconstruction of the past events. Thus, as a result of the study of supernova's outbursts, the spectrum shift analysis served a firm foundation for the discovery (one of the most important in astrophysics and the most important for the last 15 years) of antigravitation of cosmic vacuum (the so-called dark energy) which constitutes the vast majority of the total mass of the Universe. | |||
==The typical and the unique objects== | |||
On the one hand, one cannot help wondering at the Nature's ‘production-line’ ability to create millions and billions of exceptionally similar copies of the same objects. The issue of ideal eternal essences and real copies-existences of things has been the philosophers' main concern since ancient times. But, on the other hand, the variability of objects which are similar in type is undoubted. In fact, every star is very different from another even if it belongs to a narrow classification group (and there are a lot of such groups). And even if the stars are formed (like enzygotic twins) from one gasdust cluster (as a result of a single outburst of supernova, etc.), still they differ in mass, chemical composition, the presence or absence of planetary system (and in the planetary system types), brightness, characteristics of reactions, and position. None of the biological species is identical with another. The same refers to human beings (various papillary patterns on the fingers, unique genetic code, etc.). Not so long ago we believed that animals act like mechanisms according only to their genetically determined instincts. But at present, ethology identified a large range of individuality among animals as well as among insects (see, e.g., Reznikova and Panteleyeva 2012). Thus, typical and unique (individual) characteristics are peculiar to all macroobjects in nature. At the same time individuality increases as the evolution develops. Probably, the number of variability attributes increases along with the complication of systems (e.g., in human society, language, social position, nationality, etc. are added). Such analysis allows identifying the roots of the features which seem typical of humans only, as though they were inherent to Nature's grand scheme. The variability of typical objects (belonging to one class, species, group, etc.) is the most valuable tool of evolution which allows selecting variations of attributes (as well as their concentration, etc.) which are the most appropriate for a variety of tasks. A qualitative breakthrough can occur only as a result of the emergence of unique circumstances (whose possible occurrence is significantly increased through variability). Finally, only the endless variety of stars, planetary systems, planets and preceding events could be a trigger of emergence of life on planets of the Earth type. But it is quite likely that, in the field of microworld, elementary particles, atoms and molecules might also have some individual features which may be found out to affect (through certain mechanisms) some properties. It is impossible to identify the differences between the grains of sand with the naked eye, but it is easy to do it under the microscope. | |||
==Recombination, or the circulation of matter of similar class in nature== | |||
The Nature's workshop is based not only on the selection from the diversity but also on a constant remaking of objects. Every object has its own lifespan, therefore its decaying substance is involved into the circulation and new objects are formed from it. New stars are formed from exploded stars but they differ from their predecessors and this brings about an increasing diversity and enhances chances of the emergence of something brand new. Decayed biomass is a source of nutrients to support the reproduction and life of other living creatures. On debris of a destroyed empire a new one appears. On the one hand, in inanimate nature we observe a strong ability to direct and reverse transitions (contraction and expansion of the matter), transformation of energy into matter and vice versa; thus, the rebirth of a star from a gas-dust cloud is possible (but it is impossible to make an exact reproduction of a unique object as it is the general characteristic of nature). The irreversible character of processes is much more evident in animate nature. But in human society we observe an increasing irreversibility of typical processes at a certain level (not in the sense of revival of people but of the revival of social organisms which are very different from the animated organisms in a number of parameters). Thus, the decay and revival (in different ways) of objects (organisms) is a general law of evolution/the Universe. We say ‘of the Universe’ because these processes are ensured by the laws of perdurability of matter and energy. We say ‘of Evolution' because these processes allow some constant testing of new variants (in biology they also include mutations and in human society – deliberate changes which accelerate the given process, but its general basis consists in individualization of objects and recombination of the matter/energy). On the other hand, as the evolution becomes more complicated, the effect of mutual influence emerges resulting from the recombination of matter. Thus, the living matter produces a huge impact both on geological changes (organic raw materials – coal, oil7, soils, etc., not to mention the oxygen which appeared in the atmosphere as a result of the greatest aromorphosis in animate nature – of the transition from anaerobic to aerobic dissimilation) and on the geographic ones (the emergence of islands, etc.) while the anthropic matter influences both animate and inanimate nature (channels, ploughing up, etc.)." | |||
(https://www.sociostudies.org/books/files/evolution_en_4/pdf/005-019.pdf) | |||
'''Source: Introduction. Once More about Aspects, Directions, General Patterns and Principles of Evolutionary Development. By Leonid E. Grinin and Andrey V. Korotayev. In: Evolution: From Big Bang to Nanorobots 2015 5–19 ([[Evolution Almanac]], Vol. 4''' | |||
=More information= | =More information= | ||
Revision as of 10:32, 6 September 2023
Contextual Quote
"The notion of evolution is not popular in contemporary Anthropology. Many researchers do not use it preferring to write about transformation, transit, or change. Evolution for them is synonymous to dogmatic understanding of human history (Yoffee 2005; Pauketat 2008). However, even critics of evolutionism do not appear to reject the very fact of continuous social change. In prehistory people were hunters and gatherers and were integrated in small bands. Later some of them experienced sedentarization and transition to food production, began to found towns and invent complex tools. It would be ridiculous to reject such changes. Another point is that contemporary vision of cultural transformations differs greatly from the naïve ideas of the 19th century evolutionists (see, e.g., Earle 2002; Claessen 2000; Carneiro 2003, Marcus 2008; Hanks, Lin-duff 2009; Earle, Kristiansen 2010 etc.). Contemporary approaches are more flexible and are based on a much more considerable set of evidence. That is why it would be wrong to criticize the scholars of the past for their knowledge of something worse than ours. They ought to be estimated in comparison with their contemporaries. So, we believe that the notion of evolution has a right to exist, and for already several decades we have been elaborating the ideas that can be called “new wave evolutionism”, or Multi-Evolutionism or Non-Linear Evolution Theory)."
- A_Korotayev_and_D_Bondarenko et al. [1]
Discussion
Critique of Universal Evollutionism
"Universal evolutionism naturally has its own limits and vulnerabilities.
First, the universal evolutionism examines only one evolutionary trend (which is in certain respect the major one); meanwhile, it is necessary to pay attention to other trends and aspects as well Let us note that the similarities between objects and processes of different nature can become evident (and are often found) within the secondary trends (e.g., the similarity between social insects and the society).
Second, the universal evolutionism is supported by a rather narrow theoretical base of the unity of the world. In addition to distinguishing the historical and genetic unity it is necessary to find an ontological base for the unity which would be based on common principles, laws, and rules showing the internal similarity of the existence and functioning of the matter at all phases of its development.
Third, it is necessary to examine the common features disregarding the differences in nature and complexity of the objects; thus, one can formulate certain (but rather general) principles of ‘behaviour’ of the objects belonging to different evolutionary levels.
Fourth, one can postulate the unity of evolution proceeding from the assumption about the general principles (which originated genetically or typologically) of the world structure. To find out the general elements of this structure, one should compare the evolutionary levels (fields) applying different criteria."
Similarities Between All Types of Macro-Evolution
Leonid E. Grinin and Andrey V. Korotayev:
"One can find many similarities between all types of macroevolution. However, unfortunately, there are few works on the opportunity to reveal them. In the present Introduction we will briefly consider a number of quite important similarities but unfortunately in a rather unsystematized manner as they are presented here only as an illustration of some important aspects which in our opinion clearly show the systemic-structural and evolutionary functional unity of the world starting from the microworld up to contemporary global humankind. In fact one can distinguish several similarities and group them into large blocks.
The capacity for development, self-preservation and self-organization.
Evolution, that is the changes of objects, actually means the destruction of their stability and identification. From this point of view, at any stage and in any sphere of evolution the matter can be divided into two types: the first one is able to self-preservation and the second one is able to self-transformation (of course, these characteristics are present to a different degree). In other words, one can speak about evolving and non-evolving matter. There exist rather conservative elements even within human society and there still exist some societies which are not quite prone to changes, especially this phenomenon was strongly pronounced in the previous epochs. An average lifespan of a biological species is less than 10 million years. At the same time there are species which have endured for 200–300 million years, and the presumable age of blue-green algae is several billions years, that is they have not changed significantly since the Archean Eon. At any phase, the evolving matter makes up the minority (see Nazaretyan 2011); thus, the light (baryonic, stellar) matter according to some current views amounts for only 3–5 per cent. And such proportion is relevant even to the human society in which, according to some reports, the number of innovators is also 3–5 per cent. But at the same time, we suppose that just in the course of evolution of this comparatively small part of the matter the latter acquired the ability to self-organization. Many scientific disciplines, including Complexity Studies and Cybernetics, deal with the processes of self-organization of the matter. Self-organization is one of the most important and universal properties of the matter at any stage of evolution. One can say that the stronger the property of the matter to evolve, the stronger is its ability to selforganization and interaction with the environment. The issue of interaction with the environment, which is typical of evolution, can be illustrated by the problem of ‘wastes’ resulting from objects’ functioning and of the best ways to get rid of the wastes. This is a cross-cutting evolutionary and more urgent problem of the present time. Fred Spier considers this aspect from a rather interesting point (Spier 2011b). Let us note once again that the inability to evolve means the ability of the matter to self-preservation; thus, the dark matter (the composition of this matter is still unknown) has probably undergone no significant changes over the last 13–14 billion years after the Big Bang, and perhaps, it had existed before this event. Though the latest discoveries confirm the consistency of the dark matter and dark energy (cosmic vacuum), one can suppose that they are capable to transformations, but it takes much more time for the dark matter to transform than for the light matter. But some time ago the stars used to be considered unchangeable too.
The law of the age stages/phases of object's life.
Oswald Spengler (1993) and Arnold Toynbee (1991) are known for their theories of civilization which stated that every civilization passes through certain stages of life (birth, youth, maturity, and decline) before the collapse. The similar idea was suggested more categorically by Lev Gumilev, who stated that the life period of any ethnic group from its birth till death lasts for 1500 years and during its life time an ethnos passes through the same stages (see Gumilev 1993). This idea still arouses discussions; but still the idea of certain phases of social organisms' life is rather reasonable. But while in social life a society can prolong its life and retrieve its dynamism at the expense of innovations and reformations, in the case of evolution we clearly observe that all material objects and systems have a certain lifespan and pass a certain phase. It is quite obvious among the biological organisms and even species. The stars also have certain life phases. After the phase of ordinary thermonuclear reactions, which is called the main sequence phase, is completed, a star transforms into a white dwarf (after passing the red giant stage) or (having a large mass) into a neutron star. One can find certain phases within the life span of many other objects as well.
The rule of ‘block assemblage’ in evolution
This rule was formulated by Grinin, Korotayev and Markov (see Grinin, Markov, and Korotayev 2009, 2011) for the analysis of the similarities between biological and social macroevolution.6 However, it is quite relevant for the cosmic, chemical and geological phases of evolution. The essence of this rule is that in the course of evolution there emerge some elementary and more complex units, systems and constructions which are used in different variations. The elementary particles are the units which form the atoms. With the emergence of atoms there also emerge the stellar systems, and in the stellar interior new types of atoms including heavy elements are formed from additional elementary particles. Due to the diversity of emerging atoms one can speak about a chemical evolution. Atoms are the universal units and components for the formation of various molecules and this marks the beginning of geological and then of a complex molecular organic evolution leading to life. The cell becomes an element for the formation of living organisms; there progressively emerge entire blocks of organs and systems which are surprisingly similar in different classes and even types of living organisms. One can recall genes and chromosomes as standard components and blocks of biological systems. One can insert a gene of a mouse into an elephant DNA, and the human gene – into the bacteria! Thus, there is a striking standardization of elements and ‘components’ at all evolutionary levels; and since entirely new objects within evolution are for 90–99 per cent created from the already existing components, the speed of evolution increases dramatically. Let us also add that in human society the borrowing occurs rather frequently: societies adopt (sometimes as complete wholes) religions, legal, political and technological systems. As a result we observe the phenomenon of globalization in the course of which the unification reaches an unprecedented level.
The unevenness and catastrophes (gradualism and catastrophism)
Within evolution, periods of slow changes (accumulations), that is of an evolution in its narrow sense, are alternated by rapid metamorphoses and qualitative transformations (which sometimes look like revolutions) and periods of explosive growth are followed by catastrophes. In geology and paleontology there were hot debates between proponents of catastrophism (the school of the famous paleontologist George Cuvier) and adherents of gradual changes (e.g., Charles Lyell) whose approach is known as ‘gradualism’. The victory of the latter was a progress; however, later it became clear that it was very difficult to explain many things by slow and insignificant changes only. Thus, the evolutionary theory was enriched by the ideas of leaps, revolutions, and catastrophes enabling us to understand how and why the world kept changing. It is important to note that catastrophism is an essential part of evolution at all its stages. The idea of ‘Big Bang’, the biggest ‘catastrophe’ in the history of the Universe, underlies its origin. Thus, catastrophes appear to inevitably accompany the development and evolution, to be a kind of compensation for the development and rapid growth (and at certain evolutionary stages – a compensation for progress). In cosmic life, catastrophes are an inevitable result of long life of stars which, after having depleted their energy reserves, turn into the white dwarfs or red giants and sometimes they produce extremely bright outbursts of light – the outbursts of supernova. In the field of biology, the catastrophes are the great extinctions which enabled new progressive species to appear. It should be noted that the catastrophes provide an abundant data for the scientific reconstruction of the past events. Thus, as a result of the study of supernova's outbursts, the spectrum shift analysis served a firm foundation for the discovery (one of the most important in astrophysics and the most important for the last 15 years) of antigravitation of cosmic vacuum (the so-called dark energy) which constitutes the vast majority of the total mass of the Universe.
The typical and the unique objects
On the one hand, one cannot help wondering at the Nature's ‘production-line’ ability to create millions and billions of exceptionally similar copies of the same objects. The issue of ideal eternal essences and real copies-existences of things has been the philosophers' main concern since ancient times. But, on the other hand, the variability of objects which are similar in type is undoubted. In fact, every star is very different from another even if it belongs to a narrow classification group (and there are a lot of such groups). And even if the stars are formed (like enzygotic twins) from one gasdust cluster (as a result of a single outburst of supernova, etc.), still they differ in mass, chemical composition, the presence or absence of planetary system (and in the planetary system types), brightness, characteristics of reactions, and position. None of the biological species is identical with another. The same refers to human beings (various papillary patterns on the fingers, unique genetic code, etc.). Not so long ago we believed that animals act like mechanisms according only to their genetically determined instincts. But at present, ethology identified a large range of individuality among animals as well as among insects (see, e.g., Reznikova and Panteleyeva 2012). Thus, typical and unique (individual) characteristics are peculiar to all macroobjects in nature. At the same time individuality increases as the evolution develops. Probably, the number of variability attributes increases along with the complication of systems (e.g., in human society, language, social position, nationality, etc. are added). Such analysis allows identifying the roots of the features which seem typical of humans only, as though they were inherent to Nature's grand scheme. The variability of typical objects (belonging to one class, species, group, etc.) is the most valuable tool of evolution which allows selecting variations of attributes (as well as their concentration, etc.) which are the most appropriate for a variety of tasks. A qualitative breakthrough can occur only as a result of the emergence of unique circumstances (whose possible occurrence is significantly increased through variability). Finally, only the endless variety of stars, planetary systems, planets and preceding events could be a trigger of emergence of life on planets of the Earth type. But it is quite likely that, in the field of microworld, elementary particles, atoms and molecules might also have some individual features which may be found out to affect (through certain mechanisms) some properties. It is impossible to identify the differences between the grains of sand with the naked eye, but it is easy to do it under the microscope.
Recombination, or the circulation of matter of similar class in nature
The Nature's workshop is based not only on the selection from the diversity but also on a constant remaking of objects. Every object has its own lifespan, therefore its decaying substance is involved into the circulation and new objects are formed from it. New stars are formed from exploded stars but they differ from their predecessors and this brings about an increasing diversity and enhances chances of the emergence of something brand new. Decayed biomass is a source of nutrients to support the reproduction and life of other living creatures. On debris of a destroyed empire a new one appears. On the one hand, in inanimate nature we observe a strong ability to direct and reverse transitions (contraction and expansion of the matter), transformation of energy into matter and vice versa; thus, the rebirth of a star from a gas-dust cloud is possible (but it is impossible to make an exact reproduction of a unique object as it is the general characteristic of nature). The irreversible character of processes is much more evident in animate nature. But in human society we observe an increasing irreversibility of typical processes at a certain level (not in the sense of revival of people but of the revival of social organisms which are very different from the animated organisms in a number of parameters). Thus, the decay and revival (in different ways) of objects (organisms) is a general law of evolution/the Universe. We say ‘of the Universe’ because these processes are ensured by the laws of perdurability of matter and energy. We say ‘of Evolution' because these processes allow some constant testing of new variants (in biology they also include mutations and in human society – deliberate changes which accelerate the given process, but its general basis consists in individualization of objects and recombination of the matter/energy). On the other hand, as the evolution becomes more complicated, the effect of mutual influence emerges resulting from the recombination of matter. Thus, the living matter produces a huge impact both on geological changes (organic raw materials – coal, oil7, soils, etc., not to mention the oxygen which appeared in the atmosphere as a result of the greatest aromorphosis in animate nature – of the transition from anaerobic to aerobic dissimilation) and on the geographic ones (the emergence of islands, etc.) while the anthropic matter influences both animate and inanimate nature (channels, ploughing up, etc.)."
(https://www.sociostudies.org/books/files/evolution_en_4/pdf/005-019.pdf)
Source: Introduction. Once More about Aspects, Directions, General Patterns and Principles of Evolutionary Development. By Leonid E. Grinin and Andrey V. Korotayev. In: Evolution: From Big Bang to Nanorobots 2015 5–19 (Evolution Almanac, Vol. 4
More information
Articles
* Article: Cosmic Evolution and Universal Evolutionary Principles. By Leonid Grinin. In: [[Evolution Almanac]]: Evolution: From Big Bang to Nanorobots.
"The present article attempts at combining Big History potential with the potential of Evolutionary Studies in order to achieve the following goals: 1) to apply the historical narrative principle to the description of the star-galaxy era of the cosmic phase of Big History;
2) to analyze both the cosmic history and similarities and differences between evolutionary laws, principles, and mechanisms at various levels and phases of Big History.
As far as I know, nobody has approached this task in a systemic way yet. It appears especially important to demonstrate that many evolutionary principles, patterns, regularities, and rules, which we tend to find relevant only for higher levels and main lines of evolution, can be also applied to cosmic evolution."
Books
* Book: Alternatives of Social Evolution / Ed. by N. Kradin, A. Korotayev, & D. Bondarenko. Vladivostok: FEB RAS, 2000
URL = [2]
"The first part includes theoretical studies of non-linear evolution:
1 Problems, Paradoxes, and Prospects of Evolutionism Henri J.M.Claessen
2 Alternativity of Social Evolution: Introductory Notes Andrey V. Korotayev, Nikolay N. Kradin, Victor de Munck, and Valeri A. Lynsha
3 Process VS. Stages: A False Dichotomy in Tracing the Riseof the State Robert L. Carneiro
4 The Change of Non-Change: Evolution of Human Regimesand the Structure of World History Nikolai S. Rozov
5 Cultural Evolution: Systems and Meta-System Alex Brown
6 East and West in History: A Short Abstract Leonid S.Vasiliev