Blockchain: Difference between revisions
No edit summary |
|||
| Line 3: | Line 3: | ||
=Description= | =Description= | ||
by Jacob Aron: | '''1. by Jacob Aron:''' | ||
" | "The true innovation of Bitcoin's mysterious designer, Satoshi Nakamoto, is its underlying technology, the "block chain". That fundamental concept is being used to transform Bitcoin – and could even replace it altogether. | ||
So what is the block chain? It is a ledger of transactions that keeps Bitcoin secure and allows all users to agree on exactly who owns how many bitcoins. Each new block requires a record of recent transactions along with a string of letters and numbers, known as a hash, which is based on the previous block and produced using a cryptographic algorithm. | So what is the block chain? It is a ledger of transactions that keeps Bitcoin secure and allows all users to agree on exactly who owns how many bitcoins. Each new block requires a record of recent transactions along with a string of letters and numbers, known as a hash, which is based on the previous block and produced using a cryptographic algorithm. | ||
| Line 12: | Line 12: | ||
(http://www.newscientist.com/article/mg22129553.700-bitcoin-how-its-core-technology-will-change-the-world.html) | (http://www.newscientist.com/article/mg22129553.700-bitcoin-how-its-core-technology-will-change-the-world.html) | ||
'''2. Primavera De Filippi''' | |||
"For many, bitcoin — the distributed, worldwide, decentralized crypto-currency — is all about money … or, as recent events have shown, about who invented it. Yet the actual innovation brought about by bitcoin is not the currency itself but the platform, which is commonly referred to as the “blockchain” — a distributed cryptographic ledger shared amongst all nodes participating in the network, over which every successfully performed transaction is recorded. | |||
And the blockchain is not limited to monetary applications. Borrowing from the same ideas (though not using the actual peer-to-peer network bitcoin runs on), a variety of new applications have adapted the bitcoin protocol to fulfill different purposes: Namecoin for distributed domain name management; Bitmessage and Twister for asynchronous communication; and, more recently, Ethereum (released only a month ago). Like many other peer-to-peer (P2P) applications, these platforms all rely on decentralized architectures to build and maintain network applications that are operated by the community for the community. (I’ve written before here in WIRED Opinion about one example, mesh networks, which can provide an internet-native model for building community and governance). | |||
Thus, while they enable a whole new set of possibilities, blockchain-based applications also present legal, technical, and social challenges similar to those raised by other P2P applications that came before them, such as BitTorrent, Tor, or Freenet." | |||
=Discussion= | =Discussion= | ||
Revision as of 22:37, 10 March 2014
Description
1. by Jacob Aron:
"The true innovation of Bitcoin's mysterious designer, Satoshi Nakamoto, is its underlying technology, the "block chain". That fundamental concept is being used to transform Bitcoin – and could even replace it altogether.
So what is the block chain? It is a ledger of transactions that keeps Bitcoin secure and allows all users to agree on exactly who owns how many bitcoins. Each new block requires a record of recent transactions along with a string of letters and numbers, known as a hash, which is based on the previous block and produced using a cryptographic algorithm.
Miners, people who run the peer-to-peer Bitcoin software, randomly generate hashes, competing to produce one with a value below a certain target difficulty and thus complete a new block and receive a reward, currently 25 bitcoins. This difficulty means faking a transaction is impossible unless you have more computing power than everyone else on the Bitcoin network combined. Confused? Don't worry, ordinary Bitcoin users needn't know the details of how the block chain works, just as people with a credit card don't bother learning banking network jargon. But those who do understand the power of the block chain are realising how Nakamoto's technology for mass agreement can be adapted. "You can replace that agreement with all sorts of different things and now you have a really powerful building block for any kind of distributed system," says Jeremy Clark of Concordia University in Montreal, Canada." (http://www.newscientist.com/article/mg22129553.700-bitcoin-how-its-core-technology-will-change-the-world.html)
2. Primavera De Filippi
"For many, bitcoin — the distributed, worldwide, decentralized crypto-currency — is all about money … or, as recent events have shown, about who invented it. Yet the actual innovation brought about by bitcoin is not the currency itself but the platform, which is commonly referred to as the “blockchain” — a distributed cryptographic ledger shared amongst all nodes participating in the network, over which every successfully performed transaction is recorded.
And the blockchain is not limited to monetary applications. Borrowing from the same ideas (though not using the actual peer-to-peer network bitcoin runs on), a variety of new applications have adapted the bitcoin protocol to fulfill different purposes: Namecoin for distributed domain name management; Bitmessage and Twister for asynchronous communication; and, more recently, Ethereum (released only a month ago). Like many other peer-to-peer (P2P) applications, these platforms all rely on decentralized architectures to build and maintain network applications that are operated by the community for the community. (I’ve written before here in WIRED Opinion about one example, mesh networks, which can provide an internet-native model for building community and governance).
Thus, while they enable a whole new set of possibilities, blockchain-based applications also present legal, technical, and social challenges similar to those raised by other P2P applications that came before them, such as BitTorrent, Tor, or Freenet."
Discussion
Zacqary Adam Green:
"Bitcoin’s real contribution to the world is its source code. The blockchain, the network protocol, the cryptographic verification — anyone can take this and build a currency with any economic properties their community needs. I’m not convinced that bitcoin’s Austrian School properties can sustain a global (or even local) economy, but you know what? That’s okay. If I ever feel the bitcoin economy has become too unequal, unbalanced, or stagnant, it’s now trivial for me to start my own damn currency.
A single bitcoin belongs is a measurement like a centimeter, but the bitcoin community is a social network. People use bitcoin because other people they trade with use bitcoin. If my town is running low on bitcoin but has a lot of resources to share internally, we can create our own local currency to free up bitcoin for importing and exporting. Or I could join an online network of artists who work on one another’s projects, and we’d create our own internal currency that plays by whatever rules we need it to.
There is no perfect monetary system for every situation. Bitcoin is not going to be the one world currency, and it doesn’t need to be. A lot of people compare Bitcoin to the Internet, but it’s more like CompuServe. It’s the first of many digital, non-state currencies to come, that will all interoperate with each other in ways we can’t even dream of yet." (http://falkvinge.net/2013/11/06/bitcoins-real-revolution-isnt-hard-money-its-economic-panarchy/ )
Examples
Ethereum
"One of those tapping into its power is Vitalik Buterin, a 19-year-old developer from Toronto, Canada. Last week he launched Ethereum, a new platform that will not just allow for multiple cryptocurrencies, as they are known, but also promises to host a range of decentralised applications on a single block chain. Making systems decentralised is appealing because the authorities will find them hard to shut down.
Initially, Ethereum users will be able to exchange bitcoins for a new currency – ether. Then, ether will be mined just like Bitcoin. But acquiring another form of digital money is not the point. Ethereum is meant to work like an operating system for cryptocurrencies. Developers can create apps, such as social networks or file storage, that sit on Ethereum's network as part of an app store.
Ethereum allows for the creation of complex, yet decentralised, economic tools like financial derivatives, in which two parties can bet on the rise and fall of an asset, or crop insurance that pays out to a farmer according to a weather data feed. Creating decentralised versions of Dropbox or eBay should be possible too, claims Buterin.
Other developers are attempting to achieve the same results by overlaying new code on the existing Bitcoin block chain. One example is the concept of "coloured" coins: with bitcoins labelled to represent other assets such as gold, cars or even houses, you transfer ownership when you trade the labelled coin.
Buterin says Ethereum is much more flexible. "Bitcoin is great as a form of digital money, but its scripting language is too weak for any kind of serious advanced applications to be built on top." (http://www.newscientist.com/article/mg22129553.700-bitcoin-how-its-core-technology-will-change-the-world.html)
Decentralized Autonomous Corporations
"One of the more advanced concepts being touted for a next-generation Bitcoin is the idea of decentralised autonomous corporations (DAC) – companies with no directors. These would follow a pre-programmed business model and are managed entirely by the block chain. In this case the block chain acts as a way for the DAC to store financial accounts and record shareholder votes.
In a way, Bitcoin is actually the first DAC, says Daniel Larimer, a developer in Blacksburg, Virginia. People who own bitcoins are shareholders in the company, which offers financial services, earns revenue through transaction fees and pays a salary to its employees, the miners. But no one is in charge.
Larimer has started his own DAC, called BitSharesX, which he says can perform the actions of a bank, lending other currencies to customers, who can provide BitShares as collateral. Other potential business models for a DAC include election services and lotteries, all run automatically. "The key to a DAC is that it should not depend on any one person." (http://www.newscientist.com/article/mg22129553.700-bitcoin-how-its-core-technology-will-change-the-world.html)