Social Physics Collective

From P2P Foundation
Jump to navigation Jump to search


Description

Matjaz Perc:

"More than two centuries ago Henri de Saint-Simon envisaged physical laws to describe human societies. Driven by advances in statistical physics, network science, data analysis, and information technology, this vision is becoming a reality. Many of the grandest challenges of our time are of a societal nature, and methods of physics are increasingly playing a central role in improving our understanding of these challenges, and helping us to find innovative solutions. The Social physics Collection at Scientific Reports is dedicated to this research.

Although we are unique and hardly predictable as individuals, research has shown that in a collective we often behave no differently than particles in matter1. Indeed, many aspects of collective behavior in human societies have turned out to be remarkably predictable, and this fact has paved the way for methods of physics to be applied to many contemporary societal challenges. Examples include traffic2, crime3, epidemic processes4, vaccination5, cooperation6, climate inaction7, as well as antibiotic overuse8 and moral behavior9, to name just some examples.

In fact, possible synergies between physical and social sciences have been floating around in the scientific literature for centuries. Over two centuries ago, the French political and economic theorist Henri de Saint-Simon was amongst the first to propose that society could be described by laws similar to those in physics10. However, similar ideas have been around already in the 17th century, when Thomas Hobbes based his theory of the state on the laws of motion, in particular on the principle of inertia, which was then deduced by his contemporary Galileo Galilei11. The ‘invisible hand’ proposed by Adam Smith in the second half of the 18th century is also eerily similar to the now famous notions of economic and social self-organization12,13, and at the time was deemed to be as dependable in operation as the law of gravity14. And in the 19th century, the evolving physical theories of matter as a vast collection of atoms and molecules inspired a statistical view of societies and the predictable averages therein. Just as the random movements of molecules in a gas yield the mathematically simple gas laws, it was fathomed that societies may also be predictable in the collective scale. Thus, as Philip Ball argued aptly10, early sociology was indeed constructed according to an unspoken faith that there was a kind of ‘physics of society’.

But despite the long and fascinating history, it was not before the very end of the 20th century that truly remarkable progress had begun along the interface of physical and social sciences. This progress has been driven by advances in statistical and theoretical physics, by the coming of age of network science15 and computational social science16, and by the relentless innovations in computer and information technology. The result today is social physics, or the physics of social systems, which is rapidly gaining momentum and developing into a research tour de force for a better tomorrow.

The Social physics Collection at Scientific Reports is dedicated to this line of research, and after only half a year in the making underlines its strong potential. Given the diversity of the topics that are covered by social physics, it is challenging to pull a common thread through, and even to select, contributions that have been published thus far in a brief editorial. Therefore, in what follows, only a few representative examples are highlighted."

(https://www.nature.com/articles/s41598-019-53300-4)


Source