Smart Integrated Decentralised Energy

From P2P Foundation
Jump to navigation Jump to search

= Dutch proposal for bottom-up microgrids for neighborhoods

URL = https://www.metabolic.nl/publication/new-strategies-for-smart-integrated-decentralised-energy-systems/


Characteristics

"A SIDE System is defined as a highly self-sufficient and sustainable microgrid, characterised by a high degree of integration between heat and power technologies, resulting in a flexible and resilient energy system at the local level.

  • Smart: managed intelligently through a local energy management system.
  • Integrated: maximising synergies between all components.
  • Decentralised: the system operates at the local level and has a clear system boundary.
  • Energy: heat and power systems powered by sustainable technologies "

(https://www.metabolic.nl/publication/new-strategies-for-smart-integrated-decentralised-energy-systems/)


More information

"As part of the Topsector Energie Systeemintegratie Programme, the focus of this report’s analysis is to see how the flexibility of the national energy system can be increased so that a larger share of renewable energy production can be achieved. The flexibility challenge posed by the large-scale deployment of intermittent renewable energy sources is extremely complex and multifaceted. It should therefore be addressed from both the top-down and the bottom-up. In this report, however, we will purely focus on the local level.

This report will build on the knowledge obtained from several state-of-the-art microgrid pilot projects that focus on sustainability, self-sufficiency and smart energy management. To distinguish this special category of microgrids, they will be defined from now on as a Smart Integrated Decentralised Energy system, or SIDE system.

...


The goal of this report is to generate knowledge on the potential for SIDE systems to help improve the flexibility of the energy system. This is done by determining the technical, economic and legal feasibility of SIDE systems for different existing use cases. This knowledge will assist new initiatives in the development of integrated energy systems at the neighbourhood level, in order to help strengthening the energy system from the bottom up.

The four use cases are:

  • Aardehuizen: a self-sufficient ecovillage consisting of 23 earthship-type houses
  • De Ceuvel: a former shipyard turned cleantech playground
  • Schoonschip: Europe’s most sustainable floating neighbourhood
  • Republica papaverweg: a highly circular mixed area development"