## Strong connectedness of the invertibles in a finite subdiagonal algebra

HTML articles powered by AMS MathViewer

- by Michael Marsalli and Graeme West
- Proc. Amer. Math. Soc.
**128**(2000), 2967-2972 - DOI: https://doi.org/10.1090/S0002-9939-00-05388-0
- Published electronically: April 7, 2000
- PDF | Request permission

## Abstract:

Suppose $H^\infty$ is a finite, subdiagonal subalgebra of a von Neumann algebra. We show that the invertible group of $H^\infty$ is strongly connected.## References

- T. Ando,
*Comparison of norms $|||f(A)-f(B)|||$ and $|||f(|A-B|)|||$*, Math. Z.**197**(1988), no. 3, 403–409. MR**926848**, DOI 10.1007/BF01418338 - William B. Arveson,
*Analyticity in operator algebras*, Amer. J. Math.**89**(1967), 578–642. MR**223899**, DOI 10.2307/2373237 - Kenneth R. Davidson,
*Nest algebras*, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR**972978** - Kenneth R. Davidson and John Lindsay Orr,
*The invertibles are connected in infinite multiplicity nest algebras*, Bull. London Math. Soc.**27**(1995), no. 2, 155–161. MR**1325263**, DOI 10.1112/blms/27.2.155 - Kenneth R. Davidson, John Lindsay Orr, and David R. Pitts,
*Connectedness of the invertibles in certain nest algebras*, Canad. Math. Bull.**38**(1995), no. 4, 412–420. MR**1360589**, DOI 10.4153/CMB-1995-060-6 - Peter G. Dodds and Theresa K. Dodds,
*On a submajorization inequality of T. Ando*, Operator theory in function spaces and Banach lattices, Oper. Theory Adv. Appl., vol. 75, Birkhäuser, Basel, 1995, pp. 113–131. MR**1322502** - Thierry Fack and Hideki Kosaki,
*Generalized $s$-numbers of $\tau$-measurable operators*, Pacific J. Math.**123**(1986), no. 2, 269–300. MR**840845** - Richard V. Kadison and John R. Ringrose,
*Fundamentals of the theory of operator algebras. Vol. I*, Pure and Applied Mathematics, vol. 100, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Elementary theory. MR**719020** - Gareth J. Knowles and Richard Saeks,
*On the structure of invertible operators in a nest-subalgebra of a von Neumann algebra*, Topics in operator theory systems and networks (Rehovot, 1983) Oper. Theory Adv. Appl., vol. 12, Birkhäuser, Basel, 1984, pp. 303–317. MR**761365** - Michael Marsalli,
*Noncommutative $H^2$ spaces*, Proc. Amer. Math. Soc.**125**(1997), no. 3, 779–784. MR**1350954**, DOI 10.1090/S0002-9939-97-03590-9 - M. Marsalli and G. West,
*Noncommutative $H^p$ spaces*, J. Operator Theory**40**(1998), 339–355. - M. McAsey, P. Muhly, and K.-S. Saito,
*Nonselfadjoint crossed products*, Hilbert space operators (Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977) Lecture Notes in Math., vol. 693, Springer, Berlin, 1978, pp. 121–124. MR**526541** - Robert T. Powers and Erling Størmer,
*Free states of the canonical anticommutation relations*, Comm. Math. Phys.**16**(1970), 1–33. MR**269230** - Kichi-Suke Saito,
*A note on invariant subspaces for finite maximal subdiagonal algebras*, Proc. Amer. Math. Soc.**77**(1979), no. 3, 348–352. MR**545594**, DOI 10.1090/S0002-9939-1979-0545594-X

## Bibliographic Information

**Michael Marsalli**- Affiliation: Department of Mathematics, Campus Box 4520, Illinois State University, Normal, Illinois 61790-4520
- Email: marsalli@math.ilstu.edu
**Graeme West**- Affiliation: Department of Mathematics, University of the Witwatersrand, 2050 WITS, South Africa
- Email: 036weg@cosmos.wits.ac.za
- Received by editor(s): June 15, 1998
- Received by editor(s) in revised form: November 22, 1998
- Published electronically: April 7, 2000
- Communicated by: David R. Larson
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**128**(2000), 2967-2972 - MSC (2000): Primary 46L52
- DOI: https://doi.org/10.1090/S0002-9939-00-05388-0
- MathSciNet review: 1670403