P2P Foundation:Sandbox

From P2P Foundation
Revision as of 12:04, 10 November 2008 by Mbauwens (talk | contribs)
Jump to navigation Jump to search

In the sandbox you can play with wiki syntax and more.


After the Second World War, the chemical industries of the West shifted their attention back to civilian applications, including the large scale production of synthetic urea, organo-chlorines and other fertilizers and pesticides. These agrochemicals were marketed supposedly to provide additional nutrition for farmers' crops and to kill crop pests. However, farmers and governments did not realize that these products also killed, incapacitated, weakened, or otherwise made life difficult for very important but littleknown creatures: soil organisms which turned organic matter into natural plant food, and friendly organisms like predators and parasites which kept pest populations in check. These creatures comprised a vast, largely invisible and unrecognized commons which all farmers unknowingly tapped into, every time they planted seeds and grew crops. In their defense, the chemical industry might claim that they did not know either (which would be an admission of recklessness, if not negligence). But this excuse would be untenable by the 1960s, when the chemical industry viciously attacked Rachel Carson and her book Silent Spring, which had called attention to the harmful effects of DDT and other agrochemicals on nontarget organisms, including human beings.

In effect, the chemical industry was selling farmers and governments a deadly technological Trojan Horse, an anti-abundance poisoned pill. Agrochemicals appeared to offer more abundant harvests; in truth, their deployment would gradually weaken and take the life out of the farmers' biological support systems such as natural sources of plant food and pest enemies. As more agrochemicals were used, the diverse soil populations dwindled, the soil became less fertile and farmers' crops starved. To keep the plants from starving, more synthetic fertilizers were added, which caused the living soil populations to dwindle even further. As the predator and parasite populations likewise dwindled, pest populations went up. So farmers had to spray more pesticides, which then killed even more predators and parasites. More recent studies based on the theory of trophobiosis suggest that synthetic fertilizers actually make plants more attractive to pests. Farmers who took the poisoned pill were caught in the trap and fell into agrochemical addiction, draining life out of the soil and around the crops.

In the 1960s, the International Rice Research Institute (IRRI)4 introduced IR8, the first of a series of new “highyielding varieties” (HYV) of rice, whose high yields partly came from their better responsiveness to chemical treatment. Farmers were wary and few were willing to let go of their traditional varieties. Drawn by aggressive government subsidies and lending programs, however, more and more farmers switched. As they did, they also stopped planting their heirloom varieties, which were soon lost as the old seeds they had saved dried up and died. As the heirloom varieties disappeared and HYV-dependence grew, farmers also lost their selection and breeding skills. Agrochemicals and the new chemically responsive varieties would eventually be promoted as the “Green” Revolution. Even today, this technological poisoned pill continues to keep millions of farmers addicted to agrochemicals, mired in poverty and debt.

Another facet in the technological substitutions of this period was the gradual replacement of work animals by farm machinery. In the Philippines, for instance, carabaos were the farmers' main source of mechanical power. Carabaos also grazed the less fertile areas around the farm, their dung enriching the soil. The animal usually recovered by itself from injury or sickness. Even more – perhaps the most amazing thing of all – the female carabao gave birth to another carabao every two years or so. Yet, through the same poisoned pill strategy, farm machinery suppliers and the government eventually managed to get many farmers to switch to a mechanical power source that was fuelled by costly imported gasoline instead of free grass, gave out noxious pollutants instead of milk and natural fertilizer, required a skilled technician and costly spare parts if it stopped working, and of course never gave birth to its own replacement.