BioLinux: Difference between revisions

From P2P Foundation
Jump to navigation Jump to search
(Created page with " =Description= Srinivas: “A biolinux model can be applied for the development of plant varieties, agro machinery and sharing of information and knowledge. A biolinux mode...")
 
No edit summary
Line 16: Line 16:
(MTAs).”).
(MTAs).”).
(http://ssrn.com/abstract=1390273)
(http://ssrn.com/abstract=1390273)
=Discussion=
Jack Kloppenburg:
""A number of analysts have begun to look to the FOSS movement as a model for development of biological open-source practices – ‘BioLinuxes’ (Srinivas 2002) – that might be the basis for resisting enclosure of the gene-scape and for reasserting modalities for freer exchange of biological materials and information (Deibel 2006; Hope 2008). Efforts have been made to apply open-source and ‘copyleft’ principles to a variety of bioscience enterprises (Cassier 2006) including mapping of the haplotypes of the human genome (International HapMap Project), drug development for neglected diseases in the global South (the Tropical Diseases Initiative), the standardization of the components of synthetic biology (BioBricks Foundation) and a database for grass genomics (Gramene).
By far the most substantial of such initiatives has been that undertaken by Richard Jefferson and his colleagues at the non-profit CAMBIA. Convinced of the utility of advanced genetics for improving agriculture in marginal and inadequately served communities, he had been frustrated by the narrow uses to which corporations have put genetic engineering and deeply critical of the constraints they place on the sharing of patented technology (Jefferson 2006). Jefferson has formally institutionalized the principles of BIOS (capital ‘I’) in the charter and operations of a programme known as BiOS (lower case ‘I’), an ‘innovation ecosystem’ designed to ‘democratise problem solving to enable diverse solutions through decentralised innovation’ by ensuring ‘both freedom to operate and freedom to cooperate’ in a protected commons (CAMBIA 2009). BiOS involves integrating cutting edge biological research with open-source licensing arrangements that ‘support both freedom to operate, and freedom to cooperate’ in a ‘protected commons’ (CAMBIA 2009). The ‘copyleft’ provisions of the BiOS licence have proven effective in deflecting companies seeking to access CAMBIA’s portfolio of vectors and biotechnologies for the purpose of developing derivative products that would not be shared except on their terms. A protected commons can be – indeed, has been – created.
The seed sector appears to offer some interesting potentials for elaboration of a ‘BioLinux’ approach to open-source innovation (Douthwaite 2002; Srinivas 2002; Aoki 2008). Millions of farmers the world over, mostly but not exclusively in the global South, are engaged in the recombination of plant genetic material and are constantly selecting for improvements. Even more massively than their software programmer counterparts, they are effectively participating in the process of distributed peer production that Eric Raymond has characterized as the ‘bazaar’. Like programmers, farmers have found their traditions of creativity and free exchange being challenged by the IPRs of the hegemonic ‘permission culture’ and have begun looking for ways not just to protect themselves from enclosure and dispossession, but also to reassert their own norms of reciprocity and distributed innovation. Moreover, farmers have potential allies in this endeavour who themselves are capable of bringing useful knowledge and significant material resources to bear.
Although its capacity is being rapidly eroded, public plant science yet offers an institutional platform for developing the technical kernels needed to galvanize recruitment to the protected commons. And in the practice of ‘participatory plant breeding’ there is an extant organizational vehicle for articulating the complementary capacities of farmers and scientists in the North (Murphy et al. 2004) as well as the South (Salazar et al. 2007). Could ‘copyleft’ arrangements establish a space within which these elements might coalesce and unfold into a movement for the recovery of something resembling seed sovereignty?
The recent appreciation of the potential utility of open-source methods for the seed sector was preceded by a similar apprehension on the part of a member of the plant breeding community itself. At the 1999 Bean Improvement Conference, University of Guelph bean breeder Tom Michaels presented a paper titled ‘General Public License for Plant Germplasm’ (Michaels 1999). In it, he noted that as a result of
- . . . the opportunity to obtain more exclusive novel gene sequence and germplasm ownership and protection, the mindset of the public sector plant breeding community has become increasingly proprietary. This proprietary atmosphere is hostile to cooperation and free exchange of germplasm, and may hinder public sector crop improvement efforts in future by limiting information and germplasm flow. A new type of germplasm exchange mechanism is needed to promote the continued free exchange of ideas and germplasm. Such a mechanism would allow the public sector to continue its work to enhance the base genotype of economically important plant species without fear that these improvements, done in the spirit of the public good, will be appropriated as part of another’s proprietary germplasm and excluded from unrestricted use in other breeding programs. (Michaels 1999, 1)
The specific mechanism that Michaels goes on to propose is a ‘ General Public License for Plant Germplasm (GPLPG) ’ that is explicitly modelled on a type of licence common to open-source arrangements in software. This mechanism is simple, elegant and effective. It can be used by many different actors (individual farmers, communities, indigenous peoples, plant scientists, universities, nongovernmental organizations, government agencies and private companies) in many places and diverse circumstances. Properly deployed, it could be an effective mechanism for creating a ‘protected commons’ for those who are willing to freely share continuous access to a pool of plant germplasm for the purposes of ‘bazaar’-style, distributed peer production."
(from: [[Biological Open Source and the Recovery of Seed Sovereignty]])





Revision as of 06:43, 10 September 2013


Description

Srinivas:

“A biolinux model can be applied for the development of plant varieties, agro machinery and sharing of information and knowledge. A biolinux model . . . [is] as follows. The variety will be made available with a GPL or similar document explicitly stating rights and claims. . . . There will be no restriction on using [the variety] to develop new varieties or to experiment with but it is essential that the variety derived from this should also be available without any monopolistic claims and restrictions on further development. . . . [An] agency [could] coordinate [to bring] together breeders and farmers . . . . There could be a common pool to which farmers can contribute [and] . . . also exchange materials with others under Material Transfer Agreements (MTAs).”). (http://ssrn.com/abstract=1390273)


Discussion

Jack Kloppenburg:

""A number of analysts have begun to look to the FOSS movement as a model for development of biological open-source practices – ‘BioLinuxes’ (Srinivas 2002) – that might be the basis for resisting enclosure of the gene-scape and for reasserting modalities for freer exchange of biological materials and information (Deibel 2006; Hope 2008). Efforts have been made to apply open-source and ‘copyleft’ principles to a variety of bioscience enterprises (Cassier 2006) including mapping of the haplotypes of the human genome (International HapMap Project), drug development for neglected diseases in the global South (the Tropical Diseases Initiative), the standardization of the components of synthetic biology (BioBricks Foundation) and a database for grass genomics (Gramene).

By far the most substantial of such initiatives has been that undertaken by Richard Jefferson and his colleagues at the non-profit CAMBIA. Convinced of the utility of advanced genetics for improving agriculture in marginal and inadequately served communities, he had been frustrated by the narrow uses to which corporations have put genetic engineering and deeply critical of the constraints they place on the sharing of patented technology (Jefferson 2006). Jefferson has formally institutionalized the principles of BIOS (capital ‘I’) in the charter and operations of a programme known as BiOS (lower case ‘I’), an ‘innovation ecosystem’ designed to ‘democratise problem solving to enable diverse solutions through decentralised innovation’ by ensuring ‘both freedom to operate and freedom to cooperate’ in a protected commons (CAMBIA 2009). BiOS involves integrating cutting edge biological research with open-source licensing arrangements that ‘support both freedom to operate, and freedom to cooperate’ in a ‘protected commons’ (CAMBIA 2009). The ‘copyleft’ provisions of the BiOS licence have proven effective in deflecting companies seeking to access CAMBIA’s portfolio of vectors and biotechnologies for the purpose of developing derivative products that would not be shared except on their terms. A protected commons can be – indeed, has been – created.

The seed sector appears to offer some interesting potentials for elaboration of a ‘BioLinux’ approach to open-source innovation (Douthwaite 2002; Srinivas 2002; Aoki 2008). Millions of farmers the world over, mostly but not exclusively in the global South, are engaged in the recombination of plant genetic material and are constantly selecting for improvements. Even more massively than their software programmer counterparts, they are effectively participating in the process of distributed peer production that Eric Raymond has characterized as the ‘bazaar’. Like programmers, farmers have found their traditions of creativity and free exchange being challenged by the IPRs of the hegemonic ‘permission culture’ and have begun looking for ways not just to protect themselves from enclosure and dispossession, but also to reassert their own norms of reciprocity and distributed innovation. Moreover, farmers have potential allies in this endeavour who themselves are capable of bringing useful knowledge and significant material resources to bear.

Although its capacity is being rapidly eroded, public plant science yet offers an institutional platform for developing the technical kernels needed to galvanize recruitment to the protected commons. And in the practice of ‘participatory plant breeding’ there is an extant organizational vehicle for articulating the complementary capacities of farmers and scientists in the North (Murphy et al. 2004) as well as the South (Salazar et al. 2007). Could ‘copyleft’ arrangements establish a space within which these elements might coalesce and unfold into a movement for the recovery of something resembling seed sovereignty?

The recent appreciation of the potential utility of open-source methods for the seed sector was preceded by a similar apprehension on the part of a member of the plant breeding community itself. At the 1999 Bean Improvement Conference, University of Guelph bean breeder Tom Michaels presented a paper titled ‘General Public License for Plant Germplasm’ (Michaels 1999). In it, he noted that as a result of

- . . . the opportunity to obtain more exclusive novel gene sequence and germplasm ownership and protection, the mindset of the public sector plant breeding community has become increasingly proprietary. This proprietary atmosphere is hostile to cooperation and free exchange of germplasm, and may hinder public sector crop improvement efforts in future by limiting information and germplasm flow. A new type of germplasm exchange mechanism is needed to promote the continued free exchange of ideas and germplasm. Such a mechanism would allow the public sector to continue its work to enhance the base genotype of economically important plant species without fear that these improvements, done in the spirit of the public good, will be appropriated as part of another’s proprietary germplasm and excluded from unrestricted use in other breeding programs. (Michaels 1999, 1)

The specific mechanism that Michaels goes on to propose is a ‘ General Public License for Plant Germplasm (GPLPG) ’ that is explicitly modelled on a type of licence common to open-source arrangements in software. This mechanism is simple, elegant and effective. It can be used by many different actors (individual farmers, communities, indigenous peoples, plant scientists, universities, nongovernmental organizations, government agencies and private companies) in many places and diverse circumstances. Properly deployed, it could be an effective mechanism for creating a ‘protected commons’ for those who are willing to freely share continuous access to a pool of plant germplasm for the purposes of ‘bazaar’-style, distributed peer production." (from: Biological Open Source and the Recovery of Seed Sovereignty)


More Information