Maker Subculture

From P2P Foundation
Jump to navigation Jump to search

See also: Maker Movement

History

By Aurelie Ghalim, in the study, Fabbing Practices:

“In this chapter, we investigate the maker subculture and its manifestation in fabbing ecosystem. In other words, how the love of making things, hacking, tinkering, circuit bending and doing/making everything so-called DIY is a significant peculiarity of Fab Labs. We first look at the meaning and the emergence of the maker subculture and the development of hackerspaces and shared machines shops. Secondly, we explore how the maker community is shaped and organized. In a third point, this chapter details a Fab approach of architecture, art and fashion. Finally, we see how hobbyists moved from do-it-yourself (DIY) to do-it-together (DIT) activities with examples of making music instruments and biotech.


The maker subculture is a contemporary subculture, representing a technology-based extension of DIY culture. Typical interests enjoyed by the maker subculture include engineering-oriented pursuits such as electronics, robotics, 3-D printing, and the use of CNC tools, as well as more traditional activities such as metalworking, woodworking, and traditional arts and crafts. – Wikipedia

In 1968, the first issue of the American magazine The Whole Earth Catalogue was released. Subtitled “Access to Tools”, this catalogue listed a vast range of products for sale with references to the vendors and their prices. Back in the late sixties and early seventies, The Whole Earth Catalogue was the bible for the DIY movement in providing amateurs information on equipment and supplies, allowing them to make their own things. This directory was available for “everyone frustrated with industrialized mass production” . According to Pfeiffer, The Whole Earth Catalogue offered something very precious to the non-professional practitioners: the access to tools and information . In the second half of the 20th century, there was a boom in DIY activities with many magazines, television and radio shows dedicated to this topic. From a necessity to a leisure practice, DIY activity has radically changed to become more and more sophisticated overtime. Nonetheless, it became also easier with self-assembly processes and kits. Since the 1960s, manufacturers have developed and promoted easy methods that led to the simplification and commodification of DIY practices .

Since the fifties, there was a constant trend in the DIY movement to evolve with the new technologies . The introduction of computation science and later the Internet technologies has enabled users to become designers with the help of easy-use and predesigned templates. On the one hand, DIY and amateurism practices may be an aesthetic choice - unpolished look and design – promoting a romantic style and being also a political act against the machines. On the other hand, everyone can reach the perfection now with user-friendly technologies that give an almost-professional result. “Today’s DIY emphasizes customization over craft” . The cult of the amateur - the shift from being consumers to being producers - that first hit the online world is slowly moving to the offline or, in better words, the physical world. A new kind of amateurs - the makers - seeks to specialize in engineering-oriented technologies and mastering industrial machines such as CNC tools and 3D printing. The rise of this making subculture is rooted in the phenomenon of hackerspaces emerging themselves from the counterculture movement.

Hackerspaces, also called makerspaces, hacklabs, creative spaces are facilities where like-minded individuals (hackers) can learn and share technologies outside the traditional education centres.


Hackerspaces members define these locations as “community-operated physical places, where people can meet and work on their projects” . They are open labs based on peer learning where people can learn around computers, technology and electronics with an emphasis on non-market (or anti-market) orientation. Collaboration between such places is called “hackatons”. Along with hackerspaces, 100kGarages and TechShops are another type of shared-technologies places. Such as Fab Labs, 100kGarages “is a community of workshops with digital fabrication tools for precisely cutting, machining, drilling, or sculpting the parts for your project or product, in all kinds of materials, in a shop or garage near you” . ShopBot Tools Inc launched these Garages in 2008 in collaboration with Ponoko. These distributed manufacturers produce user’s design for a fee and no shop access. TechShop is a chain of workshops that started in the California Bay Area in 2006. There are currently five TechShops in the USA. Strictly commercial, this shared machine shop is based on a membership system that gives users the right to use the tools and equipment to build their own things. In the vein of Fab Labs, 100KGarages and TechShop have the same inexpensive machines (laser cutter, 3D mills) using open source software.


The concept of shared machine shops was defined in Karl Hess’ Community Technology published in 1979:

- The machine shop should have enough basic tools, both hand and power, to make the building of demonstrations models or test facilities a practical and everyday activity…For inner-city residents the shared machine shop might be a sensible and practical doorway to the neglected world of productivity as well as being a base for community experimentation and demonstration.

Peter Troxler puts on a graph the fabbing ecosystem. 100kGarages and TechShops are solely infrastructure while Fab Labs and Hackerspaces are much more places to undertake projects with a strong commitment to commons-based principles. Unlike 100kGarages, Fab Labs, TechShop and Hackerspaces let individuals to access their machines (generative). ProtoSpace is a Fab Lab based in Utrecht, founded in collaboration with the Dutch Inventors association Novu, and sponsored by many non-profit or governmental organizations. Diane Pfeiffer salutes its innovation model: “From an American perspective, it is interesting to see that this facility is sponsored through a joint initiative of eleven organisations, many of them non-profit or governmental, but favor access for new commercial entities and unaffiliated individuals” and contrasts this with the US scenario: “While there are approximately twelve Fab Labs in the US, most are not this well funded. Instead, in the US numerous small, local maker clubs are emerging alongside occasional for-profit (and not Fab Lab) enterprises such as TechShop in Palo Alto, CA and Portland, OR” .

A community of makers has been evolving around open source hardware projects and companies namely Arduino, MakerBot Industries, ReRap Project, Fab@Home and many others. These artisans 2.0 attend Maker Faires; subscribe to Make (the 21st issue covers desktop manufacturing ) and Craft magazines and share their design online. The annual Bay Area Maker Faire is a celebration of do-it-yourself culture where Pro-Ams gather in big number to see all kind of DIY stuff from robot pets, homebrewed 3D models, crafts, biotech, electronic gizmos. They are hackers, crafters, artisans and tinkerers.

Leadbeater and Miller put forward the love of making things as the first condition to be considered as a Pro-Am:

- A Pro-Am pursues an activity as an amateur, mainly for the love of it, but sets a professional standard. Pro-Ams are unlikely to earn more than a small portion of their income from their pastime but they pursue it with the dedication and commitment associated with a professional. For Pro-Ams, leisure is not passive consumerism but active and participatory; it involves the deployment of publicly accredited knowledge and skills, often built up over a long career, which has involved sacrifices and frustrations .

In 2008, the Institute for the Future (IFTF) published the study The Future of Making: the Way Things are Made Is Being Made on the emerging DIY culture of makers (Pro-Ams). IFTF identified six drivers of change that foster this movement (social networking, eco-motivation, the rise of the professional amateurs, access to tools, open-source everything and quest of authenticity) and six trends that will change how we design and produce things (desktop manufacturing, lightweight manufacturing, citizen R&D, networked artisans, grassroots economics and open innovation) ."