Integration as scientific method

From P2P Foundation
Revision as of 21:51, 27 August 2007 by Kroose (talk | contribs) (adding to →‎Background)
Jump to navigation Jump to search

The title of this page could also be: A scientific method for philosophy, psychology, sociology and other Alpha Sciences or Plausible Science

Kris Roose:

It has become a tradition to consider the exact physical experimental scientific method, including experiments, mathematical deductions and falsification as some of its core ingredients, as the only reliable paradigm to check the validity of scientific hypotheses. The fact that some very important sciences, indispensable to take decisions in daily life, i.e. the so called Alpha Sciences (philosophy, psychology, sociology, art, economics, religion, politics, etc.), were inaccessible for this method, didn't bother too much science philosophers. "Just wait till we discover some exact tools to measure those phenomena. It's just a question of time." This promise is now repeated since nearly three centuries, and still the alpha sciences remain in the realm of unscientific, uncontrollable, irrational, mythical, obscure, implausible thinking, where the number of theories equals the number of theorists.

This article proposes a novel Edit approach, considering that classical science is only one of at least two methods to control the plausibility and reliability of scientific hypotheses. The second method is described. Some historical research yields evidence that this method in fact exists since a long time, from the Renaissance scientists to Kant and Whitehead, and that it even "invented" the modern scientific method. And, most probably, the brain itself functions that way.


Confronted with life's experiences, man constantly tries to "understand" things happening around him: which factors contribute to it, to which extend they do so, and how these factors could be influenced to achieve our goals? Even at brain level, spontaneous abstractions and analogies are elaborated, and hypotheses are induced, at different levels of abstraction.

The fundamental question is: how can we be sure that these hypotheses, on which we trust to take action, are reliable, plausible, "exact"? This is the purpose of science: to control the spontaneously induced hypotheses.

The thinking process consists of four steps, often cyclically repeated:

  1. making concrete observations;
  2. induction, formulating general hypotheses out of a number of concrete observations;
  3. deduction, formulating concrete applications starting with hypotheses and combining them with data;
  4. checking if the conclusions / predictions of the deduction(s) comply with observed reality.



Science is an intellectual method to control, i.e. to prove or to falsify, hypotheses that where spontaneously formulated by a subconscious and spontaneous process, called induction.

It is important to note that, up to now, all the hypotheses, including these that made exact science so useful and impressive, were spontaneous and subconscious, i.e. highly uncontrollable and largely unpredictable. Even Einstein could not explain how he "discovered" his creative theories.

Exact science

Exact science is a scientific method where the validity of a hypothesis is controlled or falsified (i.e. proved or refuted) by making the controllable steps of thinking as reliable as possible:

  1. observations are to be made with exact measurements, repeated to make sure general tendencies are measured, by controlling the fluctuating margins of the measurements;
  2. inductions -- were and still are uncontrollable and unpredictable
  3. deductions are to be made with correct mathematical computations, and using reliable former theories
  4. checking by controlling the predictions, and making experiments, i.e. varying each aknowledged factor ("variable").

By its nature, exact science is limited to fields of reality that are directly observable, exactly measurable, and open for manipulation and experiment. Practically speaking, exact science is limited to a range of reality, going from level 3 (elements of atoms) to level 8 (animals and plants) (see Evolution Scheme). Levels 1, 2 and 9 (the latter including the so called Alpha Sciences) stay out of the application field of exact science.

One could say that exact science controls the deduction.

Plausible science

Plausible science is a scientific method where the validity (plausibility) of a hypothesis is controlled by making induction more plausible and controllable, i.e. as reliable as possible

  1. observations -- are most often limited to incidental activities;
  2. inductions are enhanced by inspiration techniques and rendered plausible by combination of the maximal number of spontaneous hypotheses;
  3. deductions have to be logic, i.e. checked against a growing corpus of coherent hypotheses. Opportunities for mathematical deductions are rare.
  4. checking occurs by applying the new insights. The opportunities for experiments and experimental variations are limited.

One could say that plausible science controls the induction.


Some fundamental concepts underpin the practical procedure:

  1. The brain helps us, at a preconscious and intuitive level, to spontaneously formulate hypotheses, that aim at explaining the influencing factors that led to the reality we experience. This process of induction is not yet fully explained. So, computers can't make inductions, and are not creative.
  2. Due to the fact that each experience is subjective, i.e. a confrontation limited to certain aspects and some states of the influencing factors, the intuitive hypothesis will have a limited relevance: missing some nuances, and making some overgeneralizations. We call these exaggerations: eductions. Newton observed the movements of objects that were relatively big, at a relatively low speed. Hence his mechanics were exact at those speeds and sizes, but inexact at higher speeds and other sizes. Einstein, with the observations of higher speeds and little size at his disposal, was able to correct Newton's formulas, adding factors which were reduced to nil at 'Newtonian' circumstances.
  3. As a consequence it is more correct to state that (nearly) every hypothesis, formulated by (experienced) humans, has somewhere a kernel (essence) of truth, than to state, as Aristotle and Descartes did, that each hypothesis is either true or false. A common misconception is to confuse reality with the model of reality. Within the model, each statement is exactly true or false, because the model is a conscious reduction of reality to measurable factors. Outside the model nearly all hypotheses are an approximation of reality, so they are nearly never completely false or completely true.
  4. Conflicts between hypotheses referring to the same phenomena are, most probably, not proofs of incorrect observations or false reasoning, but consequences of educed interpretations based upon observations in a limited context.
  5. The more intuitive hypotheses you combine from different sources, i.e. different experiential backgrounds, the more plausibility such a hypothesis will gather, on the condition that the essence of every contributing hypothesis is kept.
  6. The plausibility of a hypothesis increases with the number of complementary hypotheses it shares, but also with the degree of compliance with the existing and ever expanding coherent corpus of already existing hypotheses. This intellectual process is called integration.
  7. We agree that exact science should be preferable to plausible science. But it is senseless and, definitely, dangerous to wait another century or two to start applying a reliable scientific method to such important fields of human thinking.

The procedure of Plausible Science

Historical predecessors