Difference between revisions of "Bitcoin"

From P2P Foundation
Jump to navigation Jump to search
Line 101: Line 101:
  
 
The small band of early bitcoiners all shared the communitarian spirit of an open source software project. Gavin Andresen, a coder in New England, bought 10,000 bitcoins for $50 and created a site called the Bitcoin Faucet, where he gave them away for the hell of it. Laszlo Hanyecz, a Florida programmer, conducted what bitcoiners think of as the first real-world bitcoin transaction, paying 10,000 bitcoins to get two pizzas delivered from Papa John’s. (He sent the bitcoins to a volunteer in England, who then called in a credit card order transatlantically.) A farmer in Massachusetts named David Forster began accepting bitcoins as payment for alpaca socks."
 
The small band of early bitcoiners all shared the communitarian spirit of an open source software project. Gavin Andresen, a coder in New England, bought 10,000 bitcoins for $50 and created a site called the Bitcoin Faucet, where he gave them away for the hell of it. Laszlo Hanyecz, a Florida programmer, conducted what bitcoiners think of as the first real-world bitcoin transaction, paying 10,000 bitcoins to get two pizzas delivered from Papa John’s. (He sent the bitcoins to a volunteer in England, who then called in a credit card order transatlantically.) A farmer in Massachusetts named David Forster began accepting bitcoins as payment for alpaca socks."
 +
(http://www.wired.com/magazine/2011/11/mf_bitcoin/all/1)
 +
 +
 +
=Technological Problems=
 +
 +
Review of incidents related to Bitcoin, by Benjamin Wallace:
 +
 +
"Even the purest technology has to live in an impure world. Both the code and the idea of bitcoin may have been impregnable, but bitcoins themselves—unique strings of numbers that constitute units of the currency—are discrete pieces of information that have to be stored somewhere. By default, bitcoin kept users’ currency in a digital “wallet” on their desktop, and when bitcoins were worth very little, easy to mine, and possessed only by techies, that was sufficient. But once they started to become valuable, a PC felt inadequate. Some users protected their bitcoins by creating multiple backups, encrypting and storing them on thumb drives, on forensically scrubbed virgin computers without Internet connections, in the cloud, and on printouts stored in safe-deposit boxes. But even some sophisticated early adopters had trouble keeping their bitcoins safe. Stefan Thomas had three copies of his wallet yet inadvertently managed to erase two of them and lose his password for the third. In a stroke, he lost about 7,000 bitcoins, at the time worth about $140,000. “I spent a week trying to recover it,” he says. “It was pretty painful.” Most people who have cash to protect put it in a bank, an institution about which the more zealous bitcoiners were deeply leery. Instead, for this new currency, a primitive and unregulated financial-services industry began to develop. Fly-by-night online “wallet services” promised to safeguard clients’ digital assets. Exchanges allowed anyone to trade bitcoins for dollars or other currencies. Bitcoin itself might have been decentralized, but users were now blindly entrusting increasing amounts of currency to third parties that even the most radical libertarian would be hard-pressed to claim were more secure than federally insured institutions. Most were Internet storefronts, run by who knows who from who knows where.
 +
 +
Sure enough, as the price headed upward, disturbing events began to bedevil the bitcoiners. In mid-June, someone calling himself Allinvain reported that 25,000 bitcoins worth more than $500,000 had been stolen from his computer. (To this day, nobody knows whether this claim is true.) About a week later, a hacker pulled off an ingenious attack on a Tokyo-based exchange site called Mt. Gox, which handled 90 percent of all bitcoin exchange transactions. Mt. Gox restricted account withdrawals to $1,000 worth of bitcoins per day (at the time of the attack, roughly 35 bitcoins). After he broke into Mt. Gox’s system, the hacker simulated a massive sell-off, driving the exchange rate to zero and letting him withdraw potentially tens of thousands of other people’s bitcoins.
 +
 +
As it happened, market forces conspired to thwart the scheme. The price plummeted, but as speculators flocked to take advantage of the fire sale, they quickly drove it back up, limiting the thief’s haul to only around 2,000 bitcoins. The exchange ceased operations for a week and rolled back the postcrash transactions, but the damage had been done; the bitcoin never got back above $17. Within a month, Mt. Gox had lost 10 percent of its market share to a Chile-based upstart named TradeHill. Most significantly, the incident had shaken the confidence of the community and inspired loads of bad press.
 +
 +
In the public’s imagination, overnight the bitcoin went from being the currency of tomorrow to a dystopian joke. The Electronic Frontier Foundation quietly stopped accepting bitcoin donations. Two Irish scholars specializing in network analysis demonstrated that bitcoin wasn’t nearly as anonymous as many had assumed: They were able to identify the handles of a number of people who had donated bitcoins to Wikileaks. (The organization announced in June 2011 that it was accepting such donations.) Nontechnical newcomers to the currency, expecting it to be easy to use, were disappointed to find that an extraordinary amount of effort was required to obtain, hold, and spend bitcoins. For a time, one of the easier ways to buy them was to first use Paypal to buy Linden dollars, the virtual currency in Second Life, then trade them within that make-believe universe for bitcoins. As the tone of media coverage shifted from gee-whiz to skeptical, attention that had once been thrilling became a source of resentment.
 +
 +
 +
More disasters followed. Poland-based Bitomat, the third-largest exchange, revealed that it had—oops—accidentally overwritten its entire wallet. Security researchers detected a proliferation of viruses aimed at bitcoin users: Some were designed to steal wallets full of existing bitcoins; others commandeered processing power to mine fresh coins. By summer, the oldest wallet service, MyBitcoin, stopped responding to emails. It had always been fishy—registered in the West Indies and run by someone named Tom Williams, who never posted in the forums. But after a month of unbroken silence, Wagner, the New York City bitcoin evangelist, finally stated what many had already been thinking: Whoever was running MyBitcoin had apparently gone AWOL with everyone’s money. Wagner himself revealed that he had been keeping all 25,000 or so of his bitcoins on MyBitcoin and had recommended to friends and relatives that they use it, too. He also aided a vigilante effort that publicly named several suspects. MyBitcoin’s supposed owner resurfaced, claiming his site had been hacked. Then Wagner became the target of a countercampaign that publicized a successful lawsuit against him for mortgage fraud, costing him much of his reputation within the community. “People have the mistaken impression that virtual currency means you can trust a random person over the Internet,” says Jeff Garzik, a member of bitcoin’s core developer group."
 
(http://www.wired.com/magazine/2011/11/mf_bitcoin/all/1)
 
(http://www.wired.com/magazine/2011/11/mf_bitcoin/all/1)
  

Revision as of 07:10, 22 May 2012

a new open source P2P e-cash system, originally developed by Satoshi Nakamoto

URL = http://en.wikipedia.org/wiki/Bitcoin

Download Bitcoin v0.1 at http://www.bitcoin.org ; Design paper at http://www.bitcoin.org/bitcoin.pdf

Clearing up Bitcoin misconceptions, Let's clear up some common Bitcoin misconceptions.


Definition

1. Bitcoin is a leader in distributed P2P Currency. Each participant can be part of a network as wide as they can reach, or as small as they choose to make it. The only drawback of Bitcoin is the necessity to use the Bitcoin currency. This is offset for many by the fact that, because the currency is 'in force' and widely used, a number of exchanges have popped up, allowing users to trade coins for other currencies. Bitcoin may be useful for a P2P Network as an immediate replacement for cash with low infrastructure requirements for implementation.


2. From the Wikipedia:

"Bitcoin is an open source peer-to-peer electronic cash system developed by Satoshi Nakamoto. The system is decentralized with no central server or trusted parties. Bitcoin relies on cryptographic principles to create unique, unreproducible, and divisible tokens of value. Users hold the cryptographic keys to their own money and transact directly with each other, with the help of the network to check for double-spending." (http://en.wikipedia.org/wiki/Bitcoin)


3. Springwise


"Bitcoin bills itself as “the first digital currency that is completely distributed.” In essence, that means that it’s managed collectively by a global network of users, so no bank or payment processor is required between buyers and sellers in any transaction. Users begin with Bitcoin by downloading its client program for Linux, Mac or Windows, thereby creating a digital wallet and associated Bitcoin address for themselves. Next, very small quantities of Bitcoins are available for free from the Bitcoin faucet, but to get larger ones, users can visit various currency exchanges and sites. They can also accept Bitcoins as payments for goods and services. Either way, once they have Bitcoins — abbreviated “BTC” — users can spend them at various participating online merchants for a wide variety of goods and services. It’s free for merchants to accept Bitcoins, and there are no chargebacks or fees. Currently, there is no charge for processing Bitcoin transactions, but eventually a small fee of about one bitcent will be charged every transaction to one of many competing Bitcoin “miners,” who create Bitcoins in a controlled way by running a dedicated program." (http://www.springwise.com/financial_services/bitcoin/)

Description

1. Satoshi writes:


"It’s completely decentralized, with no central server or trusted parties, because everything is based on crypto proof instead of trust.

The root problem with conventional currency is all the trust that’s required to make it work. The central bank must be trusted not to debase the currency, but the history of fiat currencies is full of breaches of that trust. Banks must be trusted to hold our money and transfer it electronically, but they lend it out in waves of credit bubbles with barely a fraction in reserve. We have to trust them with our privacy, trust them not to let identity thieves drain our accounts. Their massive overhead costs make micropayments impossible.

A generation ago, multi-user time-sharing computer systems had a similar problem. Before strong encryption, users had to rely on password protection to secure their files, placing trust in the system administrator to keep their information private. Privacy could always be overridden by the admin based on his judgment call weighing the principle of privacy against other concerns, or at the behest of his superiors. Then strong encryption became available to the masses, and trust was no longer required. Data could be secured in a way that was physically impossible for others to access, no matter for what reason, no matter how good the excuse, no matter what.

It’s time we had the same thing for money. With e-currency based on cryptographic proof, without the need to trust a third party middleman, money can be secure and transactions effortless.

One of the fundamental building blocks for such a system is digital signatures. A digital coin contains the public key of its owner. To transfer it, the owner signs the coin together with the public key of the next owner. Anyone can check the signatures to verify the chain of ownership. It works well to secure ownership, but leaves one big problem unsolved: double-spending. Any owner could try to re-spend an already spent coin by signing it again to another owner. The usual solution is for a trusted company with a central database to check for double-spending, but that just gets back to the trust model. In its central position, the company can override the users, and the fees needed to support the company make micropayments impractical.

Bitcoin’s solution is to use a peer-to-peer network to check for double-spending. In a nutshell, the network works like a distributed timestamp server, stamping the first transaction to spend a coin. It takes advantage of the nature of information being easy to spread but hard to stifle. For details on how it works, see the design paper here at http://www.bitcoin.org/bitcoin.pdf.

The result is a distributed system with no single point of failure. Users hold the crypto keys to their own money and transact directly with each other, with the help of the P2P network to check for double-spending."


2. Aran explains:

Bitcoin is an open source peer-to-peer (a.k.a "p2p") electronic cash system that's completely decentralised, with no central server, trusted authorities or middle men. The availability of bitcoins can't be manipulated by governments or financial institutions. Bitcoin already has a number of exchanges for converting to and from other currencies; BitcoinFX, New Liberty Standard, Bitcoin Exchange and Bitcoin Market.

Bitcoin may last for years and become a popular global currency, or it could be just a flash in the pan, but either way I think this is an important sign of the times to come. This is one of the first truly decentralised currencies and has paved the way for hundreds more to compete together in the new arena of Cipherspace over the coming years. This is one of the key factors in the transition of global society into the post-nation-state economy talked about in The Sovereign Individual.

In a p2p computer network there are no servers, the entire network is composed of users running instances of the application on their computers. Each running instance offers a small amount of processing and storage resource to the network so that it can deliver the services it was designed for such as redundant storage, anonymity or voice-over-IP applications.

In the case of a p2p currency system, some of the services the network is designed to offer are privacy, verification, authentication, currency creation and transfer of ownership. To ensure a reliable and tamper-proof system requires a lot of resource, and that amount is proportional to the amount of coins in the network. The network is able to pay the users for the resource they offer by making the coin-creation process part of the network protocol itself instead of being handled by a central trusted authority. This creates a natural and incorruptible link between the supply of currency in the network and the demand for it.

Even aside from the ability to exchange bitcoins for other currencies, it still makes a very useful tool for independent organisations and groups because it allows them to trade and settle accounts amongst themselves independently and privately. It effectively gives them a "bank" that has a trustworthy system of accounts that can't be tampered with and requires no corruptible central authority to operate. See the Bitcoin Whitepaper for more detail about how it works.

To try Bitcoin, download the Bitcoin software, then once it's running, click 'Generate Coins' which will pay you bitcoins in exchange for your computer working to validate bitcoin transactions. Check the exchange rate to calculate how many bitcoins need to be sent. The payer can purchase additional bitcoins if needed. The payer's previously generated bitcoins allow for a lower out of pocket payment. The payer then sends the bitcoins to the receiver using the Bitcoin software. The receiver can then sell their bitcoins for dollars. The receiver's previously generated bitcoins allow a higher dollar payout." (source?)


3. FAQ

"Q. What is Bitcoin?

A. Bitcoin is a peer-to-peer currency. Peer-to-peer means that no central authority issues new money or tracks transactions. These tasks are managed collectively by the network.

Q. How does Bitcoin work?

A. Bitcoin utilises public-key cryptography. A coin contains the owner's public key. When a coin is transferred from user A to user B, A adds B’s public key to the coin, and the coin is signed using A's private key. B now owns the coin and can transfer it further. A is prevented from transferring the already spent coin to other users because a public list of all previous transactions is collectively maintained by the network. Before each transaction the coin’s validity will be checked." (https://en.bitcoin.it/wiki/Main_Page)

Details

"The total number of bitcoins is programmed to approach 21 million over time. The money supply is programmed to grow as a geometric series every 210,000 blocks (roughly every 4 years); by 2013 half of the total supply will have been generated, and by 2017, 3/4 will have been generated. To ensure sufficient granularity of the money supply, bitcoins are divisible down to eight decimal places (a total of 2.1 × 10^15 or 2.1 quadrillion units)." (http://en.wikipedia.org/wiki/Bitcoin#Monetary_differences)

Note: the eight decimal places are only an artifact of the datatype used in current implementations. Should the need ever arise, this can be changed in the code. [1]


Context

Rainey Reitman (EFF):

"To understand digital currency, one must first note that money in the digital age has moved from a largely anonymous system to one increasingly laden with tracking, control and regulatory overhead. Our cold hard cash is now shepherded through a series of regulated financial institutions like banks, credit unions and lenders. Bitcoin, created in 2009 by Satoshi Nakamoto, is a peer-to-peer digital currency system that endeavors to re-establish both privacy and autonomy by avoiding the banking and government middlemen. The goal is to allow individuals and merchants to generate and exchange modern money directly. Once the Bitcoin software has been downloaded, a user can store Bitcoins and exchange them directly with other users or merchants — without the currency being verified by a third party such as a bank or government. It uses a unique system to prevent multiple-spending of each coin, which makes it an interesting development in the movement toward digital cash systems.

The model proposed by Bitcoin is in many ways a response to some of the privacy and autonomy concerns surrounding our current financial system. Current money systems now increasingly come with monitoring of financial transactions and blocking of financial anonymity. A peer-to-peer currency could theoretically offer an alternative to the bank practices that increasingly include sharing information on their customers who don't actively opt-out, and who may even then be able to share data with affiliates and joint marketers. Bitcoin is particularly interesting in the wake of recent events that demonstrated how financial institutions can make political decisions in whom they service, showcased by the decisions of PayPal, Visa, Mastercard and Bank of America to cut off services to Wikileaks. Bitcoin, if it were to live up to the dreams of its creators, might offer the kind of anonymity and freedom in the digital environment we associate with cash used in the offline world.

But Bitcoin's current implementation won't resolve all of the issues surrounding autonomy and privacy. Notably, the anonymity on Bitcoin is not entirely secure at this time, which makes its merits as a more private form of currency tenuous at best. There are also other weaknesses to the system, some significant, which should be understood before using Bitcoin. And as of this writing, Bitcoin can't be used to donate to Wikileaks. But even more important than these concerns is the fact that governments around the world may raise legal issues with any digital cash scheme — ranging from money laundering to tax evasion to a range of other regulatory concerns. Nonetheless, Bitcoin is an intriguing project and worth watching to see how it develops in the coming years." (https://www.eff.org/deeplinks/2011/01/bitcoin-step-toward-censorship-resistant)


History

Benjamin Wallace:

"Nakamoto himself mined the first 50 bitcoins—which came to be called the genesis block—on January 3, 2009. For a year or so, his creation remained the province of a tiny group of early adopters. But slowly, word of bitcoin spread beyond the insular world of cryptography. It has won accolades from some of digital currency’s greatest minds. Wei Dai, inventor of b-money, calls it “very significant”; Nick Szabo, who created bit gold, hails bitcoin as “a great contribution to the world”; and Hal Finney, the eminent cryptographer behind RPOW, says it’s “potentially world-changing.” The Electronic Frontier Foundation, an advocate for digital privacy, eventually started accepting donations in the alternative currency.

The small band of early bitcoiners all shared the communitarian spirit of an open source software project. Gavin Andresen, a coder in New England, bought 10,000 bitcoins for $50 and created a site called the Bitcoin Faucet, where he gave them away for the hell of it. Laszlo Hanyecz, a Florida programmer, conducted what bitcoiners think of as the first real-world bitcoin transaction, paying 10,000 bitcoins to get two pizzas delivered from Papa John’s. (He sent the bitcoins to a volunteer in England, who then called in a credit card order transatlantically.) A farmer in Massachusetts named David Forster began accepting bitcoins as payment for alpaca socks." (http://www.wired.com/magazine/2011/11/mf_bitcoin/all/1)


Technological Problems

Review of incidents related to Bitcoin, by Benjamin Wallace:

"Even the purest technology has to live in an impure world. Both the code and the idea of bitcoin may have been impregnable, but bitcoins themselves—unique strings of numbers that constitute units of the currency—are discrete pieces of information that have to be stored somewhere. By default, bitcoin kept users’ currency in a digital “wallet” on their desktop, and when bitcoins were worth very little, easy to mine, and possessed only by techies, that was sufficient. But once they started to become valuable, a PC felt inadequate. Some users protected their bitcoins by creating multiple backups, encrypting and storing them on thumb drives, on forensically scrubbed virgin computers without Internet connections, in the cloud, and on printouts stored in safe-deposit boxes. But even some sophisticated early adopters had trouble keeping their bitcoins safe. Stefan Thomas had three copies of his wallet yet inadvertently managed to erase two of them and lose his password for the third. In a stroke, he lost about 7,000 bitcoins, at the time worth about $140,000. “I spent a week trying to recover it,” he says. “It was pretty painful.” Most people who have cash to protect put it in a bank, an institution about which the more zealous bitcoiners were deeply leery. Instead, for this new currency, a primitive and unregulated financial-services industry began to develop. Fly-by-night online “wallet services” promised to safeguard clients’ digital assets. Exchanges allowed anyone to trade bitcoins for dollars or other currencies. Bitcoin itself might have been decentralized, but users were now blindly entrusting increasing amounts of currency to third parties that even the most radical libertarian would be hard-pressed to claim were more secure than federally insured institutions. Most were Internet storefronts, run by who knows who from who knows where.

Sure enough, as the price headed upward, disturbing events began to bedevil the bitcoiners. In mid-June, someone calling himself Allinvain reported that 25,000 bitcoins worth more than $500,000 had been stolen from his computer. (To this day, nobody knows whether this claim is true.) About a week later, a hacker pulled off an ingenious attack on a Tokyo-based exchange site called Mt. Gox, which handled 90 percent of all bitcoin exchange transactions. Mt. Gox restricted account withdrawals to $1,000 worth of bitcoins per day (at the time of the attack, roughly 35 bitcoins). After he broke into Mt. Gox’s system, the hacker simulated a massive sell-off, driving the exchange rate to zero and letting him withdraw potentially tens of thousands of other people’s bitcoins.

As it happened, market forces conspired to thwart the scheme. The price plummeted, but as speculators flocked to take advantage of the fire sale, they quickly drove it back up, limiting the thief’s haul to only around 2,000 bitcoins. The exchange ceased operations for a week and rolled back the postcrash transactions, but the damage had been done; the bitcoin never got back above $17. Within a month, Mt. Gox had lost 10 percent of its market share to a Chile-based upstart named TradeHill. Most significantly, the incident had shaken the confidence of the community and inspired loads of bad press.

In the public’s imagination, overnight the bitcoin went from being the currency of tomorrow to a dystopian joke. The Electronic Frontier Foundation quietly stopped accepting bitcoin donations. Two Irish scholars specializing in network analysis demonstrated that bitcoin wasn’t nearly as anonymous as many had assumed: They were able to identify the handles of a number of people who had donated bitcoins to Wikileaks. (The organization announced in June 2011 that it was accepting such donations.) Nontechnical newcomers to the currency, expecting it to be easy to use, were disappointed to find that an extraordinary amount of effort was required to obtain, hold, and spend bitcoins. For a time, one of the easier ways to buy them was to first use Paypal to buy Linden dollars, the virtual currency in Second Life, then trade them within that make-believe universe for bitcoins. As the tone of media coverage shifted from gee-whiz to skeptical, attention that had once been thrilling became a source of resentment.


More disasters followed. Poland-based Bitomat, the third-largest exchange, revealed that it had—oops—accidentally overwritten its entire wallet. Security researchers detected a proliferation of viruses aimed at bitcoin users: Some were designed to steal wallets full of existing bitcoins; others commandeered processing power to mine fresh coins. By summer, the oldest wallet service, MyBitcoin, stopped responding to emails. It had always been fishy—registered in the West Indies and run by someone named Tom Williams, who never posted in the forums. But after a month of unbroken silence, Wagner, the New York City bitcoin evangelist, finally stated what many had already been thinking: Whoever was running MyBitcoin had apparently gone AWOL with everyone’s money. Wagner himself revealed that he had been keeping all 25,000 or so of his bitcoins on MyBitcoin and had recommended to friends and relatives that they use it, too. He also aided a vigilante effort that publicly named several suspects. MyBitcoin’s supposed owner resurfaced, claiming his site had been hacked. Then Wagner became the target of a countercampaign that publicized a successful lawsuit against him for mortgage fraud, costing him much of his reputation within the community. “People have the mistaken impression that virtual currency means you can trust a random person over the Internet,” says Jeff Garzik, a member of bitcoin’s core developer group." (http://www.wired.com/magazine/2011/11/mf_bitcoin/all/1)

Interview

Excerpted from a more detailed interview:

"Klint Finley: Could you give us a brief overview of what Bitcoin is for the unfamiliar?

Gavin Andresen: Sure. Bitcoin is the first peer-to-peer currency - it is money created by people instead of by a central bank or government.


And how does it work?

Everybody trying to create bitcoins and everybody trading bitcoins is connected by a peer-to-peer network. And the code everybody is running makes sure nobody else is cheating - nobody else is creating more bitcoins than are allowed, nobody is trying to spend their bitcoins more than once, and that bitcoins are only being spent by their rightful owners.

The really novel idea is a mechanism for preventing bitcoins from being spent more than once WITHOUT relying on a central authority.

The other mostly new idea is limiting the supply of bitcoins without relying on a central authority.


How do you accomplish these things without a central authority? And how do Bitcoin clients and servers find each other?


Let me tackle the easy one first - how do Bitcoin clients find each other:

All p2p networks have "the bootstrapping problem" - without central servers, nodes (machines) on the network need to be able to find each other. Bitcoin solves it using three mechanisms:

1. By default, Bitcoin clients join an IRC chat channel and watch for the IP addresses and ports of other clients joining that channel. The name of that channel (and the name of the IRC chat server) is hardcoded into the Bitcoin software.

2. There is a list of "well known" Bitcoin nodes compiled into the software in case the IRC chat server is unreachable for some reason.

3. You can manually add (via configuration file or command-line option) IP addresses of other machines running Bitcoin to connect.


Once you're connected to the Bitcoin p2p network, other machines send you messages containing IP addresses (and ports) of other machines they know about, so after bootstrapping you find other Bitcoin nodes via the Bitcoin network itself.

There is a lot of discussion about alternative bootstrapping mechanisms, so I wouldn't be surprised if alternative Bitcoin implementations that use something else pop up in the next year or so.


I'm guessing you can also change the IRC server and channel manually as well?

No, actually, you can't - you'd have to recompile Bitcoin to do that." (http://www.readwriteweb.com/hack/2010/12/interview-bitcoin.php)



Aspects of Bitcoin

Bitcoin as cryptograpic breaktrhough

by Benjamin Wallace:

"In November 1, 2008, a man named Satoshi Nakamoto posted a research paper to an obscure cryptography listserv describing his design for a new digital currency that he called bitcoin. None of the list’s veterans had heard of him, and what little information could be gleaned was murky and contradictory. In an online profile, he said he lived in Japan. His email address was from a free German service. Google searches for his name turned up no relevant information; it was clearly a pseudonym. But while Nakamoto himself may have been a puzzle, his creation cracked a problem that had stumped cryptographers for decades. The idea of digital money—convenient and untraceable, liberated from the oversight of governments and banks—had been a hot topic since the birth of the Internet. Cypherpunks, the 1990s movement of libertarian cryptographers, dedicated themselves to the project. Yet every effort to create virtual cash had foundered. Ecash, an anonymous system launched in the early 1990s by cryptographer David Chaum, failed in part because it depended on the existing infrastructures of government and credit card companies. Other proposals followed—bit gold, RPOW, b-money—but none got off the ground.

One of the core challenges of designing a digital currency involves something called the double-spending problem. If a digital dollar is just information, free from the corporeal strictures of paper and metal, what’s to prevent people from copying and pasting it as easily as a chunk of text, “spending” it as many times as they want? The conventional answer involved using a central clearinghouse to keep a real-time ledger of all transactions—ensuring that, if someone spends his last digital dollar, he can’t then spend it again. The ledger prevents fraud, but it also requires a trusted third party to administer it.


Bitcoin did away with the third party by publicly distributing the ledger, what Nakamoto called the “block chain.” Users willing to devote CPU power to running a special piece of software would be called miners and would form a network to maintain the block chain collectively. In the process, they would also generate new currency. Transactions would be broadcast to the network, and computers running the software would compete to solve irreversible cryptographic puzzles that contain data from several transactions. The first miner to solve each puzzle would be awarded 50 new bitcoins, and the associated block of transactions would be added to the chain. The difficulty of each puzzle would increase as the number of miners increased, which would keep production to one block of transactions roughly every 10 minutes. In addition, the size of each block bounty would halve every 210,000 blocks—first from 50 bitcoins to 25, then from 25 to 12.5, and so on. Around the year 2140, the currency would reach its preordained limit of 21 million bitcoins." (http://www.wired.com/magazine/2011/11/mf_bitcoin/all/1)


Bitcoin Business and Economics

Bitcoin Research

Publications including research and analysis of Bitcoin or related areas, https://en.bitcoin.it/wiki/Research

list of researchers, via [2]

  • Jerry Brito (@JerryBrito), senior research fellow at the Mercatus Center at George Mason University. [3]
  • Russell Roberts (@EconTalker) of the Library of Economics and Liberty. He hosted an EconTalk episode on Bitcoin: [4]
  • economist Jon Matonis (@JonMatonis) who recently presented on using Bitcoins as a currency to monetize game play: [5]

Critics:

  • Timothy B. Lee (@BinaryBits) sees problems with Bitcoin (bubbles, vulnerable to cartel, etc.): [6]

The problems of Bitcoin

"What Bitcoin doesn't provide or doesn't provide in an effective manner:

   * Cost of creating money
   * Method of reaching a consensus, based on computing power
   * No "real value" to back it
   * Settlement risk not covered
   * Scalability issues
   * All the lacking features of a "soft" currency."

(http://events.ccc.de/congress/2011/Fahrplan/events/4668.en.html)

Discussion

See: Bitcoin - Discussion

Amongst the issues raised in our discussion entry are:

  1. A summary of BitCoin criticisms
  2. Scarcity Aspects of Bitcoin
  3. Mining Privileges associated with Bitcoin
  4. The Difference between Bitcoin and Open Coin
  5. Is Bitcoin a deflationary currency?
  6. Bitcoin wastes energy
  7. Is Bitcoin Legal?

Why Bitcoin is Flawed from a Monentary Reformers' Point of View

Anthony Migchels:

"Bitcoin’s existence is very useful for all monetary reformers as it will allow us to gather information about the strategies that the adversary will use to disable it.


Notwithstanding these revolutionary breakthroughs, Bitcoin does suffer from a basic flaw. It’s designed to behave like Gold. Nakamoto clearly believes Austrian Economics to the last word, including the idea that hyperinflation is the main threat to the system.

As a result Bitcoin suffers from the same problems as Gold: it is deflationary and expensive. There is never enough of it. True, Bitcoins can be divided in ever smaller denominations, so ‘physically’ there will never be a shortage, but it means Bitcoin is designed to appreciate for ever and this is the definition of deflation.

Worse still, Bitcoin does not address the interest issue. There is no possibility for cheap credit and if the unit matures, a banking system will be necessary to provide credit based on deposits.

Not only will this exacerbate the scarcity of money, it will also lead to very high cost for capital.

Yet another problem is that with a full reserve banking system as required by bitcoin (and Gold too, by the way) would allow the Money Power to mop up the money supply through compound interest within one or two decades, as you can find out here..

The basic conceptual flaw is, that Austrian Economics believes a currency should be a good store of value first and foremost. This is the fatal mistake: money is a means of exchange, and it is the agreement to use it as such that gives it value, not the other way around. This is even true of Gold today: the reason Gold is now expensive, is because many investors are speculating it will be currency again.

Because of this design flaw, Bitcoin is being hoarded by its users. They prefer to have it sit in their ‘account’, instead of spending it, hoping it will appreciate. As a result turnover is lower than it could be. The unit is already an object of speculation, hindering its primary function: to finance normal trade.


Bitcoin is a revolution and a badly needed bit of fresh air. Peer to peer and independent of banks and Government it is an example for all of us. Yes, we should press for reform at the Government level, but no, we should not await it. There is a free market for currencies and it is ours for the taking.

However, it is not credit based and it does not allow for interest free credit. It’s deflationary by nature, which is very problematic.

Its decentralized peer to peer nature and its convertibility mechanism are its main strengths. If these can be harnessed in interest free credit based units, the Money Power would be really hard pressed.

Bitcoin is a shot heard far and wide, but it is only the proverbial first shot across the bow." (http://realcurrencies.wordpress.com/2012/05/18/bitcoin-impressive-but-flawed/)


A possible p2p critique of the current p2p protocol?

Michel Bauwens:

"The great achievement of Bitcoin is that we have the very first "socially sovereign" digital currency, independent of government and corporation, that is workable, technically "peer to peer", and that it creates the enthusiasm of the hacker community, which almost certainly means it will be adapted and used later by more people. So, in this way, this is a tipping point. However, the Bitcoin design may also have some serious flaws. First of all, the way it is mined privileges the technical community itself as it can have access to networks of botnets to generate coins, in a way most people can't. Secondly it is a 'scarcity' based currency, subject to hoarding and wealth accumulation (only 21m bitcoins will be created, insuring a constant growth in value), that does not really change what is 'wrong' with the current currency system. As many so-called 'peer to peer' technologies (such as crowdfunding, crowdsourcing, etc..) it may increase wider participation and 'distribution' but without necessarily changing the dysfunctional neoliberal functioning of the market. Nevertheless, what it really shows is that socially sovereign currencies are viable, and could be created as a tool of the countereconomy, though this may require a different ruleset for its functioning. so that true 'social' peer to peer values can be integrated in the design of future 'post-Bitcoin' currencies."


Is Bitcoin truly p2p?

Victor Grishchenko:

" The very basis of Bitcoin design assumes that every node needs to be aware of every transaction in the system just to prevent double-spending:

- We need a way for the payee to know that the previous owners did not sign any earlier transactions... The only way to confirm the absence of a transaction is to be aware of all transactions.


Thus, every “full” node needs to maintain a dossier on every “coin” out there and, preferably, to keep the entire history of transactions. First of all, that is the opposite of scalability. Such a system is not “decentralized”, but more like a “replicated center” system, as there is an absolute necessity to gather all the existing data in a single point to make any meaningful operation. Partial knowledge does not work. The authors describe those full nodes as “super-peers” saying that

- Bitcoin nodes could easily keep up with both VISA and MasterCard combined, using only fairly modest hardware (a couple of racks of machines using todays hardware)... the intention is to evolve it towards a more typical two-tier structure in which low powered client nodes connect to long-lived, high powered supernodes.


Thus, Bitcoin is only “peer-to-peer” in the sense of the British Peerage system. Bitcoin “commoners” must appeal to their “lords” who have sufficient means to judge on validity of transactions and to seal those transactions as valid, likely for a fee." (http://www.pds.ewi.tudelft.nl/~victor/bitcoin.html)

Bitcoin Directory

Useful Resources via [7]:

WeUseCoins.org - Best place for beginners to start.

QuickCo.in - Best way to buy Bitcoins for beginners (ready by end of April 2012)

BitInstant.com - Allows quick purchases of Bitcoin via anonymous cash deposits at major banks across the US. This is currently the easiest and fastest way to buy Bitcoin in the US.

Bitcoin.org - Official site of the Bitcoin project, download the wallet software here.

MtGox.com - The leading Bitcoin exchange. Buy and sell Bitcoins here.

CryptoXChange.com - Another popular Bitcoin exchange. Buy and sell Bitcoins here.

Paytunia.com - Very nice online ewallet service with Android app. Store your coins here.

BitcoinTalk.org - The official discussion forum, and large enthusiast community

Wiki.Bitcoin.it - Encyclopedia of most aggregated Bitcoin knowledge, very extensive.

Bitcoin.it/wiki/trade - Partial list of companies that accept Bitcoin as payment

BitcoinMagazine.net - Professional publication and news portal

Blockchain.info - Tool for viewing accounts, payments, and numerous economic statistics.

BitcoinCharts.com - Shows current market prices and economic statistics.

Preev.com - Super easy Bitcoin<->fiat calculator, multiple currencies supported

BitcoinMonitor.com - Live view of transactions as they happen on the Bitcoin network.

Paysius.com - Enables businesses to automatically accept Bitcoin payments on their website.

Bit-Pay.com - Another excellent merchant solution for businesses that wish to accept Bitcoin payments.

Coinabul.com - Leading gold and silver bullion seller for Bitcoin

MyBitcoinMint.com - Selling silver Bitcoin-themed 1oz rounds

SpendBitcoins.com - Enables you to buy credit with major brands like Amazon and Southwest Airlines for Bitcoin.

WorkForBitcoin.com - Bitcoin job board - freelance projects which pay in Bitcoin.

StuffExists.com - Extensive repository of hundreds of other resources.



More Information

Explanatory paper at http://www.bitcoin.org/sites/default/files/bitcoin.pdf


  • Bitcoin for beginners
  1. http://mybitcoin.com ; website version, no download required, start making or receiving donations.

@the best available info for beginners is http://bitcoinme.com.


Critiques of Bitcoin

  1. http://www.pds.ewi.tudelft.nl/~victor/bitcoin.html


Video documentation

  1. TWIST Bitcoin episode, Full show: http://thisweekin.com/thisweekin-startups/bitcoin-discussion-with-gavin-andresen-and-amir-taaki-on-this-week-in-startups-140/
  2. Gavin explains the fundamentals of Bitcoin, http://www.youtube.com/watch?v=Ta73DofiT7o
  3. Who is Satoshi, the mysterious bitcoin founder? http://www.youtube.com/watch?v=RDRwgbWkxFw
  4. The million-dollar bitcoin question: Can the system be hacked? http://www.youtube.com/watch?v=G2837h-85O4
  5. Jason sets his software to generate bitcoins and Gavin explains why that's a bad idea, http://www.youtube.com/watch?v=jix4MG5V0-E

Other Digital Currencies

"While Bitcoin is relatively young, digital currencies have been around a long time. Digicash, released in 1994, is considered a pioneer of electronic cash using cryptography to maintain anonymity. The Ripple currency project relies on interpersonal relationships to allow communities to create their own money systems (which is similar to the Local Exchange Trading System). There is also the anonymous digital cash system eCache, which can only be accessed via the anonymous onion routing network Tor. There are also numerous other digital money projects that have been proposed over the years; Bitcoin is just the newest chapter in the ongoing effort to create wholly digital currency." (https://www.eff.org/deeplinks/2011/01/bitcoin-step-toward-censorship-resistant)



  1. eCache: an anonymous bank operating over the Tor network.
  2. Pecunix: an (optionally?) anonymous digital gold currency.

Miscellaneous